

DISTRIBUTED CO-SIMULATION PROTOCOL (DCP)

DOCUMENT STATUS: MODELICA ASSOCIATION STANDARD

DOCUMENT TYPE: SPECIFICATION DOCUMENT

VERSION: 1.0.0

DATE: MARCH 4, 2019

Distributed Co-Simulation Protocol Specification Version 1.0

 2 / 112

Executive summary

This document defines the Distributed Co-Simulation Protocol (DCP), version 1.0. The DCP is a

platform and communication medium independent standard for the integration of models or real-

time systems into simulation environments. DCP development was driven by the idea to make

simulation based work flows more efficient, reduce integration effort and simplify related pro-

cesses, and improve the integration of real-time systems. This standard is supported by OEMs,

suppliers, tool providers, universities and research organizations.

Standardisation

This specification is developed and maintained by the newly founded Modelica Association Pro-

ject (MAP) Distributed Co-Simulation Protocol (DCP). For further information see:

www.dcp-standard.org

www.modelica.org

To get in touch with MAP DCP, contact us at contact@dcp-standard.org.

History

Version Date Remarks

1.0 2019-03-04 First version of the Distributed Co-Simulation Protocol.

Distributed Co-Simulation Protocol Specification Version 1.0

 3 / 112

Contributors

Specification document editor:

Martin Krammer, Kompetenzzentrum - Das Virtuelle Fahrzeug Forschungsgesellschaft mbH

The “DCP Specification 1.0-Release Candidate 2” document was created in scope of the

ITEA3 project ACOSAR from 09/2015 to 08/2018. Essential parts thereof were contributed by the

ACOSAR Core Team. This development group was headed by Martin Krammer (Kompetenzzent-

rum - Das Virtuelle Fahrzeug Forschungsgesellschaft mbH). Its members in alphabetical order

were:

Khaled Alekeish, ESI-ITI Gmbh

Nicolas Amringer, dSPACE GmbH

Martin Benedikt, Kompetenzzentrum - Das Virtuelle Fahrzeug Forschungsgesellschaft mbH

Torsten Blochwitz, ESI-ITI GmbH

Isidro Corral, Robert Bosch GmbH

Micha Damm-Norwig, KS.MicroNova GmbH

Christian Kater, Leibniz Universität Hannover

Serge Klein, RWTH Aachen University

Martin Krammer, Kompetenzzentrum - Das Virtuelle Fahrzeug Forschungsgesellschaft mbH

Stefan Materne, TWT GmbH

Natarajan Nagarajan, ETAS GmbH

Roberto Ruvalcaba, TWT GmbH

Viktor Schreiber, University of Ilmenau

Klaus Schuch, AVL List GmbH

Tommy Sparber, Spath Micro Electronic Design GmbH

Andreas Thuy, ETAS GmbH

The “DCP Specification 1.0-Release Candidate 4” document was developed after the ACO-

SAR project, from 09/2018 to 02/2019. Essential parts thereof were contributed by the following

people, in alphabetical order:

Khaled Alekeish, ESI-ITI GmbH

Torsten Blochwitz, ESI-ITI GmbH

Isidro Corral, Robert Bosch GmbH

Micha Damm-Norwig, KS.MicroNova GmbH

Christian Kater, Leibniz Universität Hannover

Martin Krammer, Kompetenzzentrum - Das Virtuelle Fahrzeug Forschungsgesellschaft mbH

Stefan Materne, TWT GmbH

Klaus Schuch, AVL List GmbH

Stefan Walter, dSPACE GmbH

The following people contributed through reviews and comments, in alphabetical order:

Leo Gall, LTX Simulation GmbH

Andreas Junghanns, QTronic GmbH

Pierre Mai, PMSF IT Consulting

Distributed Co-Simulation Protocol Specification Version 1.0

 4 / 112

License of this Document

This DCP specification document is issued under Creative Commons Attribution-ShareAlike 4.0

International (CC BY-SA 4.0).

Copyright © 2016-2018 ACOSAR consortium, 2018-2019 Modelica Association Project (MAP)

Distributed Co-Simulation Protocol (DCP).

This is a human-readable summary of (and not a substitute for) the license. The legal license

text and disclaimer is available at:

https://creativecommons.org/licenses/by-sa/4.0/legalcode

You are free to:

Share — copy and redistribute the material in any medium or format

Adapt — remix, transform, and build upon the material

for any purpose, even commercially.

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and indicate if

changes were made. You may do so in any reasonable manner, but not in any way that suggests

the licensor endorses you or your use.

ShareAlike — If you remix, transform, or build upon the material, you must distribute your con-

tributions under the same license as the original.

No additional restrictions — You may not apply legal terms or technological measures that

legally restrict others from doing anything the license permits.

Notices:

You do not have to comply with the license for elements of the material in the public domain or

where your use is permitted by an applicable exception or limitation.

No warranties are given. The license may not give you all of the permissions necessary for your

intended use. For example, other rights such as publicity, privacy, or moral rights may limit how

you use the material.

Distributed Co-Simulation Protocol Specification Version 1.0

 5 / 112

Contents

1 Overview .. 7
2 Properties and Guiding Ideas... 8
3 Protocol Specification .. 10

3.1 Basic Definitions ... 10
3.1.1 Keywords ... 10
3.1.2 Version Descriptor ... 10
3.1.3 DCP Slave ... 10
3.1.4 DCP File .. 10
3.1.5 Master-Slave Architecture ... 11
3.1.6 State Machine .. 11
3.1.7 Protocol Data Units .. 11
3.1.8 Number Representation .. 11
3.1.9 Indices .. 11
3.1.10 Data Types ... 11
3.1.11 Byte Order .. 12
3.1.12 Data Type Encoding ... 12
3.1.13 Timing .. 14
3.1.14 Notion of Time ... 14
3.1.15 Operating Modes ... 14
3.1.16 Time Resolution ... 15
3.1.17 Communication Step Size .. 15
3.1.18 Variables .. 15
3.1.19 Dependencies .. 19
3.1.20 Data Type Conversions .. 19
3.1.21 Native and Non-Native DCP Specification .. 19
3.1.22 Transport Protocol Numbering .. 19
3.1.23 Logging ... 20

3.2 State Machine Definitions .. 20
3.2.1 General .. 20
3.2.2 Description ... 20
3.2.3 Superstates .. 22
3.2.4 States ... 23
3.2.5 Transitions ... 29

3.3 PDU Definitions .. 36
3.3.1 General .. 36
3.3.2 Structuring ... 36
3.3.3 PDU Fields .. 37
3.3.4 PDU Type Identifier Range Distribution ... 40
3.3.5 Generic PDU Structure ... 40
3.3.6 Allowed PDUs per State ... 42
3.3.7 PDU Definitions .. 43

3.4 Protocol .. 52
3.4.1 Sequence Identifier .. 52
3.4.2 Configuration Request Pattern .. 52
3.4.3 State Transition Pattern ... 52
3.4.4 State Reporting .. 53
3.4.5 Data Exchange.. 54
3.4.6 Scope.. 54
3.4.7 PDU Validity ... 54
3.4.8 Error Reporting .. 62
3.4.9 Heartbeat ... 62
3.4.10 Error Handling .. 63
3.4.11 Unintended Behaviour ... 64

4 Transport Protocols ... 65
4.1 General ... 65
4.2 Internet Protocol (IPv4) Based Transport Protocols ... 65

4.2.1 General .. 65
4.2.2 User Datagram Protocol (UDP/IPv4) .. 67
4.2.3 Transmission Control Protocol (TCP/IPv4) ... 67

Distributed Co-Simulation Protocol Specification Version 1.0

 6 / 112

4.3 Bluetooth Radio Frequency Communication (RFCOMM) ... 67
4.3.1 General .. 67
4.3.2 Transport Protocol Specific Fields .. 67
4.3.3 Network Information ... 67
4.3.4 Port information .. 68
4.3.5 PDUs in RFCOMM stream .. 69

4.4 Universal Serial Bus (USB) .. 69
4.4.1 USB Version.. 69
4.4.2 General .. 69
4.4.3 Transport Protocol Specific PDU Fields .. 69
4.4.4 Descriptors ... 69
4.4.5 Network Information ... 71
4.4.6 DAT_input_output forwarding... 72

4.5 CAN Bus Communication Systems .. 72
4.5.1 Procedure... 72
4.5.2 DCP over CAN ... 72
4.5.3 Definition of KMatrix.. 73
4.5.4 Definition of the Scenario Configuration ... 77

5 DCP Slave Description .. 78
5.1 General ... 78
5.2 Use of Assertions and Constraints .. 78
5.3 Data Type Definitions ... 79
5.4 Definition of dcpSlaveDescription Element .. 80
5.5 Definition of OpMode Element .. 82
5.6 Definition of UnitDefinitions Element .. 83
5.7 Definition of TypeDefinitions Element ... 85

5.7.1 General .. 85
5.7.2 Definition of Data Types and Attributes .. 85

5.8 Definition of VendorAnnotations Element ... 87
5.9 Definition of TimeRes Element ... 87
5.10 Definition of Heartbeat Element .. 88
5.11 Definition of TransportProtocols Element .. 88

5.11.1 General .. 88
5.11.2 IPv4 Type .. 89
5.11.3 UDP/IPv4 .. 90
5.11.4 CAN .. 90
5.11.5 USB ... 90
5.11.6 Bluetooth ... 91
5.11.7 TCP/IPv4 ... 91

5.12 Definition of CapabilityFlags Element... 92
5.13 Definition of Variables Element .. 92

5.13.1 Definition of Variable Element ... 92
5.13.2 Definition of Variable Element Attributes.. 93
5.13.3 Definition of Variable Data Types and Attributes .. 94
5.13.4 Definition of Output Element Attributes ... 96
5.13.5 Definition of Output Dependencies ... 96
5.13.6 Definition of Multi-Dimensional Data Types .. 97

5.14 Definition of Log Element ... 98
6 Abbreviations... 100
7 Literature ... 101
8 Glossary ... 102
9 Acknowledgments ... 103
10 Appendix .. 104

A. Key Words to Indicate Requirement Levels.. 104
B. Default DCP Slave Integration .. 105
C. Example: Encoding of Variables ... 106
D. Example: Data Exchange .. 110
E. Recovery Procedure ... 111
F. General Guideline ... 112

Distributed Co-Simulation Protocol Specification Version 1.0

 7 / 112

1 Overview

Virtual system development is getting more and more important in a plenitude of industrial do-

mains to reduce development times, stranded costs and time-to-market. Co-simulation is a par-

ticularly promising approach for interoperable and modular development. The Functional Mock-

up Interface (FMI) defines a standardized specification for the integration of simulation models,

tools and solvers. However, the coupling and integration of real-time systems into simulation

environments (especially of distributed hardware-in-the-loop systems and simulations) still re-

quires enormous effort.

The Distributed Co-Simulation Protocol (DCP) was developed in scope of the ACOSAR (Advanced

Co-Simulation Open Systems Architecture) project. The DCP specifies a data model, a finite state

machine, a set of protocol data units and a communication protocol. It is intended for the inte-

gration of real-time and/or non-real-time systems. It features a master-slave principle. Further-

more, it is defined independently of the underlying transport protocol and distinguishes between

native and non-native DCP specifications. With this approach, support for additional transport

protocols may be added in the future. The DCP specification also includes a default integration

methodology.

The DCP specification document at hand can lead to a modular, considerably more flexible, as

well as shorter system development process. The DCP is suitable for application in numerous

industrial domains. Furthermore, it has the potential to enable new business models.

Distributed Co-Simulation Protocol Specification Version 1.0

 8 / 112

2 Properties and Guiding Ideas

In this section, properties are listed, and some principles are defined that guided the design of

the DCP. Six central aspects drive the development: interoperability, integration, compatibility,

communication, performance, and economy.

• Interoperability: The DCP defines a communication protocol intended for the exchange of

simulation related information and data. It enables the interoperability of systems from

different providers. This principle homogenizes the situation exposed when having a het-

erogeneous landscape of tools, protocols, and interfaces commonly found in today’s work

environments. It further facilitates the deployment of co-simulation approaches across

different computers, sites, and companies.

• Integration: The DCP enables the integration of distributed real-time systems and/or non-

real-time systems into one common co-simulation scenario.

The DCP operation follows a master-slave architecture. This type of architecture is benefi-

cial because it ensures the integration of multiple DCP slaves into a common co-

simulation scenario. This principle supports co-simulation of mixed systems, e.g. hard-

ware setups and digital models. The DCP master-slave approach facilitates the addition

and/or removal of single components without the need to stop any DCP slave. Conse-

quently, one can switch between digital models and real hardware setups, and therefore

accelerate the development process.

Furthermore, a default integration methodology is provided. It demonstrates the interplay

of different parts of the DCP specification. Furthermore, it also demonstrates the role of

components that are not part of this DCP specification.

• Compatibility: The DCP is defined in a way such that it supports the integration of FMI

based systems within DCP slaves. This applies to FMI for Model Exchange as well as FMI

for Co-Simulation. The DCP state machine is designed that it matches operations defined

in the state machine of the FMI. Furthermore, the DCP slave description file is aligned to

the model description file of the FMI. The data types defined in the DCP slave description

file may also be converted to FMI compatible data types. This principle supports FMI-

based simulation models, considering the fact that FMI is one of the most common co-

simulation standards today.

Whereas the FMI represents an application programming interface (API), the DCP repre-

sents a communication protocol. Therefore, it becomes possible to integrate various kinds

of systems. The DCP specification is suitable for a broad range of computing platforms. It

may be implemented on hardware as well as in software. Typical examples are middle-

ware, runtime environments, (virtualized) operating systems, electronic control units,

FPGAs, and many more.

• Communication: The DCP enables simulation data exchange by a variety of communica-

tion systems and transport protocols. The DCP specification refrains from further specifi-

cation of the communication medium. This attribute underscores the underlying design

principle that the choice of the communication medium must be as convenient as possible

for the end-user. DCP abstracts from the most common communication systems. As of

today, supported communication systems and transport protocols include UDP/IPv4, Blue-

tooth, USB, and CAN.

Modern system development processes require the exchange of many different data

types. The DCP specification supports the transmission of data type primitives, vectors,

binary data, and strings. Finally, the DCP specification offers a dedicated safe-state. It

may be used to provide the possibility to implement mechanisms for protection of opera-

tors and the involved hardware. The safety mechanisms themselves are not inherent to

the DCP specification.

• Performance: Distributed real-time and non-real-time co-simulation requires high per-

formance of data exchange. For that reason, the exchanged simulation data at runtime

does not contain any overhead data, like signal names or value references. The DCP sup-

ports data exchange between slaves via the co-simulation master, as well as direct slave

to slave data exchange. The DCP master is free to define either a number of short data

segments, or all data at once for the exchange of simulation data. This also depends on

the capabilities of the communication medium.

Distributed Co-Simulation Protocol Specification Version 1.0

 9 / 112

• Economy: The DCP specification is intended to contribute to the following economic land-

marks. First, it helps to reduce development time. This is achieved by independent de-

sign, development, and test of each individual subsystem. Therefore, the development

process can be parallelized. Only the final integration happens collaboratively. Negotia-

tions between system suppliers and integrators can be kept to a minimum. Second, the

DCP specification is independent of any computing platform, which can decrease compu-

ting costs., Third, a shortened time-to-market can be achieved by efficiently setting up

and running an increased number of test cases. Due to the open manner and free availa-

bility of the DCP specification document, a vivid and active DCP community distributes the

DCP specification document into different application domains. The creation of business

opportunities, especially for smaller companies, also emerges from this community. Final-

ly, mutual support and exchange of experience will drive future development of the DCP.

Distributed Co-Simulation Protocol Specification Version 1.0

 10 / 112

3 Protocol Specification

3.1 Basic Definitions

The DCP is a platform-independent protocol which enables communication and data exchange for

co-simulation, between a multitude of different computing platforms, operating systems and

software. This section defines the data types supported by the DCP and their encodings to ena-

ble interoperability between these systems.

3.1.1 Keywords

Unless noted otherwise, the meaning of keywords (must, must not, should, …) as stated in Ap-

pendix A of this document applies.

3.1.2 Version Descriptor

This DCP specification utilizes the following version descriptor numbering scheme. See also sec-

tion 5.4.

• dcpMajorVersion: First level version number. Indicates a major specification release that

is relevant to compliant implementation.

• dcpMinorVersion: Second level version number. Indicates a minor specification release

that is relevant to compliant implementation.

• dcpMaintenanceVersion: Third level version number. Indicates a specification release

that is not relevant to compliant implementation.

3.1.3 DCP Slave

A DCP slave is either a simulation model or a real-time system on a ready-to-run execution plat-

form that is accessible via DCP over a given supported communication medium.

3.1.4 DCP File

All static information related to a DCP slave is stored in an accompanying DCP file (file exten-

sion: .dcp). This file is a zip file. The compression method used for the zip file must be "de-
flate".

Any tool exporting or importing such a file must obey the following.

Exporter for DCP files version 1.0

Any tool creating DCP files according to this version of the specification. Its internal structure

must be as follows.

Structure Description

/ Root of the zip file.

Note: It is not allowed to place any other files and

folders at the same hierarchy level than the "v1.0"

folder.

/v1.0 Folder in the root of the zip file.

This is mandatory.

/v1.0/dcpSlaveDescription.dcpx DCP slave description according to this specification. See sec-

tion 5 for details.

This is mandatory.

/v1.0/documentation Directory containing documentation for the DCP slave.

This is optional.

/v1.0/* Other files and folders might be included.

This is optional.

Table 1: Internal structure of DCP file

Distributed Co-Simulation Protocol Specification Version 1.0

 11 / 112

Importer for DCP files version 1.0

An importing tool must only consider the folder "/v1.0" and its subfolders. Any other files and

folders at the same hierarchy level than the "v1.0" folder must be ignored.

Note: This is reserved for future versions of the DCP.

3.1.5 Master-Slave Architecture

Exactly one DCP master may control at least one DCP slave. The DCP master is the only one to

send DCP request PDUs within a single scenario. After registration, one DCP slave shall com-

municate with exactly one DCP master.

This DCP specification is intended for the realization of a DCP slave. It does not explicitly specify

how a DCP master must be designed. A DCP master provider needs to ensure that its DCP mas-

ter is able to correctly operate with at least one DCP slave according to this DCP specification.

3.1.6 State Machine

Each DCP slave internally implements a state machine, where a transition refers to a change of a

state. Transitions can be triggered by PDUs. Details are given in section 3.2. At any given instant

of time a DCP slave is in exactly one state. This assumes that transitions are instantaneous.

3.1.7 Protocol Data Units

DCP slaves communicate by using Protocol Data Units, short PDU. In general, a DCP slave must

be capable of sending and receiving such PDUs. Available PDUs within DCP are organized in PDU

families which are named Request, Response, Notification and Data. The Request PDUs consist of

configuration request (CFG), state change request (STC) and information request (INF) PDUs.

The Response (RSP) PDUs together with Request PDUs represent the family of Control PDUs.

See also section 3.3.

3.1.8 Number Representation

All numbers given in this DCP specification document must be interpreted as decimal, if no prefix

is used. Hexadecimal values are always indicated with the prefix 0x. If a binary number appears

outside a table, binary numbers are indicated with the prefix 0b.

3.1.9 Indices

All indices and positions start at 0 (“zero”) unless stated otherwise.

3.1.10 Data Types

The supported data types of the DCP are defined in Table 2. Each data type is assigned a unique

identifier (ID).

Distributed Co-Simulation Protocol Specification Version 1.0

 12 / 112

Data type IDhex

uint8 0x0

uint16 0x1

uint32 0x2

uint64 0x3

int8 0x4

int16 0x5

int32 0x6

int64 0x7

float32 0x8

float64 0x9

string 0xA

binary 0xB

Table 2: Supported data types of the DCP

3.1.11 Byte Order

The byte order considered for this entire DCP specification document is little endian, unless ex-

plicitly noted otherwise.

3.1.12 Data Type Encoding

3.1.12.1 Integer Numbers

• Unsigned integers (data types uint8, uint16, uint32 and uint64) are transferred as

unsigned binary numbers in little endian byte order. The number of bits used to store the

integer is defined by its suffix, e. g. 8 bits for uint8.

• Signed integers (data types int8, int16, int32 and int64) are transferred as binary

numbers in two's complement representation in little endian byte order. The required

number of bits in memory for storing the integer is defined by the suffix, e. g. 8 bits for

int8.

• Table 3 illustrates both the binary and the representation of the sample number

i=-89498498 as int32 in PDUs.

Binary 1 1 1 1 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 1 1 0 0 0 1 1 1 1 1 1 0

Hex 0xFA 0xAA 0x5C 0x7E

 MSB LSB

Position n n + 1 n + 2 n + 3

DAT_input_outputBin 0 1 1 1 1 1 1 0 0 1 0 1 1 1 0 0 1 0 1 0 1 0 1 0 1 1 1 1 1 0 1 0

DAT_input_outputHex 0x7E 0x5C 0xAA 0xFA

 Sign Binary Values

Table 3: int32 representation

3.1.12.2 Floating Point Numbers

32 bit floating point numbers (data type float32) are transferred in binary32 format, as de-

fined in [1], in little endian byte order:

• The binary value is built from MSB to LSB by the following: Sign (1 bit), Exponent (8 bit),

and Mantissa (23 bit).

64 bit double values (data type float64) are transferred in binary64 format, as defined

in [1], in little endian byte order:

• The binary value is built from MSB to LSB by the following: Sign (1 bit), Exponent (11

bit), and Fraction (53 bit). This binary value is transferred in little endian byte order.

• Table 4 illustrates both the binary and the representation of the sample number

f=7256.2568359375 as float32 in PDUs.

Distributed Co-Simulation Protocol Specification Version 1.0

 13 / 112

Binary 0 1 0 0 0 1 0 1 1 1 1 0 0 0 1 0 1 1 0 0 0 0 1 0 0 0 0 0 1 1 1 0

Hex 45 E2 C2 0E

 MSB LSB

Position n n + 1 n + 2 n + 3

DAT_input_outputBin 0 0 0 0 1 1 1 0 1 1 0 0 0 0 1 0 1 1 1 0 0 0 1 0 0 1 0 0 0 1 0 1

DAT_input_outputHex 0E C2 E2 45

 Sign Exponent Fraction

Table 4: float32 representation

See Appendix for further examples.

3.1.12.3 Binary

The DCP offers a binary data type (binary) to transmit arbitrary information. The binary repre-

sentation consists of an unsigned integer (uint32) that specifies the length in bytes of the actual

data, followed by the binary data itself. The data is transmitted as given without changing the

order of its bits. Thus, the maximum length of data is limited to 4294967296 bytes.

Note: This general DCP specification does not define PDU fragmentation or splitting.

The example given in Table 5 and Table 6 shows the encoding of a four byte data sequence in

binary data type. The actual data is given in Table 5, whereas in Table 6 the PDU representation

of the payload is shown. The total length of the payload is 6 bytes, the first four bytes store an

integer value (uint32) indicating the length (4 bytes) of the actual data.

Data Binary 0 0 1 1 1 0 0 1 1 1 1 0 0 1 1 0 0 0 1 0 1 0 0 1 1 1 0 1 0 0 1 0

Data Hex 39 E6 29 D2

Byte index 0 1 2 3

Table 5: binary data type example

The payload is then encoded as shown in Table 6.

Position n n+1 n+2 n+3

PDUBin 0 0 0 0 0 1 0

PDUHex 0x04 0x00 0x00 0x00

Position n+2 n+3 n+4 n+5

PDUBin 0 0 1 1 1 0 0 1 1 1 1 0 0 1 1 0 0 0 1 0 1 0 0 1 1 1 0 1 0 0 1 0

PDUHex 0x39 0xE6 0x29 0xD2

Table 6: Binary data type representation.

Note: A maximum length in bytes may be specified in DCP slave description by set-

ting the maxSize attribute.

Note: Depending on the transport protocol and its maxPduSize attribute in the DCP

slave description, the full range of the length cannot be used, e.g. for USB, 1024

bytes can be transmitted. Therefore the maximum size of the binary value is limited

to 1016 bytes.

3.1.12.4 Strings

In general, the string data type is encoded in the same way as the binary data type. Strings are

of variable length and are not terminated in any way. However, the specified character encoding

for strings is UTF-8 [2].

Note: UTF-8 strings are handled byte-wise.

Distributed Co-Simulation Protocol Specification Version 1.0

 14 / 112

Note: A maximum length in bytes may be specified in DCP slave description by set-

ting the maxSize attribute. Also note that the length in bytes does not necessarily

match the number of encoded characters in the string.

Note: Depending on the transport protocol and its maxPduSize attribute in the DCP

slave description, the full range of the length cannot be used, e.g. for USB, 1024

bytes can be transmitted. Therefore the maximum size of the binary value is limited

to 1016 bytes.

Note: These definitions apply to protocol data units (PDUs, as defined in section 3.3)

only.

The following Table 7 illustrates the encoding of the word “beef” (0x62, 0x65, 0x65, and 0x66).

The payload is then encoded as shown in Table 8.

Data Binary 0 1 1 0 0 0 1 0 0 1 1 0 0 1 0 1 0 1 1 0 0 1 0 1 0 1 1 0 0 1 1 0

Data Hex, UTF-8 0x62 0x65 0x65 0x66

Byte index 0 1 2 3

Table 7: String data type example

Position n n+1 n+2 n+3

DAT_input_outputBin 0 0 0 0 0 1 0

DAT_input_outputHex 0x04 0x00 0x00 0x00

Position n+2 n+3 n+4 n+5

DAT_input_outputBin, UTF-8 0 1 1 0 0 0 1 0 0 1 1 0 0 1 0 1 0 1 1 0 0 1 0 1 0 1 1 0 0 1 1 0

DAT_input_outputHex, UTF-8 0x62 0x65 0x65 0x66

Table 8: String data type representation

3.1.13 Timing

DCP does not include mechanisms for time synchronization. If such mechanisms are needed,

existing mechanism for time synchronization between nodes shall be used. A typical example for

such a mechanism can be found in [3].

3.1.14 Notion of Time

3.1.14.1 Absolute Time

The absolute time is the newtonian time represented by a UNIX time stamp in UTC format. It is

defined in seconds since January 1st, 1970, 00:00:00 UTC, minus the number of leap seconds

from that date till now.

Note: This is also referred as epoch.

3.1.14.2 Simulation Time

The simulation time is the time value to which simulation models inside DCP slaves refer to.

3.1.15 Operating Modes

3.1.15.1 General

The DCP defines three different operating modes targeting the real-time properties specified in

the following sections. A DCP slave must support at least one of them. Table 9 specifies the op-

erating modes enumeration.

Distributed Co-Simulation Protocol Specification Version 1.0

 15 / 112

Operating mode op_modehex

HRT 0x00

SRT 0x01

NRT 0x02

Table 9: Operating modes enumeration

The DCP slave is informed by the master about the chosen operating mode (one of HRT, SRT,

NRT).

Note: For native DCP (see section 3.1.21), this is achieved via STC_register PDU (see

section 3.3.7.1).

3.1.15.2 Hard Real-Time (HRT)

All deadlines for all outputs must be met. Simulation time is synchronous to absolute time. In

case of any deviations, the DCP slave transitions to the error state.

Note: Synchronous means that one unit of elapsed absolute time corresponds to the

same unit of simulation time.

3.1.15.3 Soft Real-Time (SRT)

It depends on the application if and how SRT DCP slaves are integrated into scenarios. The DCP

slave tries to meet deadlines for all outputs. If deadlines are not met, the DCP slave continues

operation. Simulation time should be synchronous to absolute time. It depends on the applica-

tion, if and when the DCP slave signals an error.

3.1.15.4 Non-Real-Time (NRT)

Simulation time is independent from absolute time. It can be faster or slower. Reception of PDU

STC_do_step (see section 3.3.7.7) is required.

3.1.16 Time Resolution

One atomic time step, i.e. the resolution, is defined as a fraction of two integer values numera-
tor and denominator. It is set by the DCP master. For native DCP it is rolled out via PDU

CFG_time_res in state CONFIGURATION (see section 3.2). The unit of the fraction is seconds.

Possible values for the communication are defined in the DCP slave description, where either a

valid range is specified or a list of valid values is provided.

3.1.17 Communication Step Size

The communication step size is defined as follows:

 ����������		
���
���� = �
	��
���
����	��
��� ∙ �����

where numerator divided by denominator represents the resolution and steps represents the

integer number of resolution intervals. The minimum value for steps is 1.

If the communication step size for an output should be fixed, then both the attributes resolution

and steps need to be set to fixed in the DCP slave description.

For operating modes HRT and SRT, steps is configured via PDU CFG_steps

(see section 3.3.7.15) by the DCP master in state CONFIGURATION.

For the operating mode NRT, steps is given in each PDU STC_do_step (see section 3.3.7.7).

3.1.18 Variables

All variable values (inputs, outputs, parameters, structural parameters) of a DCP slave are iden-

tified with a variable handle called value reference (abbreviated vr). This handle is defined in the

DCP slave description file as attribute valueReference in element Variable. See section 5.13.2

for details.

Distributed Co-Simulation Protocol Specification Version 1.0

 16 / 112

3.1.18.1 Variable Naming Convention

Within the DCP slave description the attribute variableNamingConvention of element

dcpDescription defines the convention how the variable names are constructed. This infor-

mation may then be used by the simulation environment for structuring.

Possible options are given in Table 10.

Note: This is based on FMI 2.0.

Option Description

flat name = Unicode-char { Unicode-char }

Unicode-char = any Unicode character without carriage return (0x0D), line feed

(0x0A) nor tab (0x09)

This definition is identical to xs:normalizedString used in the specification of

FMI.

The names shall be unique, non-empty strings are not allowed.

structured Structured names are hierarchically organized and use “.” as a separator between

hierarchies. A name consists of “_”, letters and digits or may consist of any char-

acters enclosed in single apostrophes. A name may identify an array element on

every hierarchical level using square brackets “[...]” to identify the respective ar-

ray index.

In the following definitions, an extended Backus-Naur form (EBNF) [4] is used.

The precise syntax is:
name = identifier | "der(" identifier ["," unsignedInteger] ")"
identifier = B-name [arrayIndices] {"." B-name [arrayIndices] }
B-name = nondigit{digit|nondigit}|Q-name
nondigit = "_" | letters "a" to "z" | letters "A" to "Z"
digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"
Q-name = "’" (Q-char | escape) { Q-char | escape } "’"
Q-char = nondigit | digit | "!" | "#" | "$" | "%" | "&" | "(" | ")" |
"*" | "+" | "," | "-" | "." | "/" | ":" | ";" | "<" | ">" | "=" | "?"
| "@" | "[" | "]" | "^" | "{" | "}" | "|" | "~" | " "
escape = "\’" | "\"" | "\?" | "\\" | "\a" | "\b" |
"\f" | "\n" | "\r" | "\t" | "\v"
arrayIndices = "[" unsignedInteger {"," unsignedInteger} "]"
unsignedInteger = digit { digit }

Note: This definition is identical to the syntax of an identifier in Modeli-

ca version 3.2.

The tree of names must be mapped to an ordered list of structured variable names

in depth-first order.

Example:

vehicle

 transmission

 ratio

 outputSpeed

 engine

 inputSpeed

 temperature

is mapped to the following list of structured variable names:

vehicle.transmission.ratio

Distributed Co-Simulation Protocol Specification Version 1.0

 17 / 112

vehicle.transmission.outputSpeed

vehicle.engine.inputSpeed

vehicle.engine.temperature

Note: No further restrictions apply (e.g., no alphabetical sort on same

hierarchical level)

Variables representing array elements must be given in a consecutive sequence.

Elements of multi-dimensional arrays are ordered according to row major order,

that is elements of the last index are given in sequence.

For example, elements of the vector “centerOfMass” in body “arm1” of

robot are mapped to the following variables:

robot.arm1.centerOfMass[1]

robot.arm1.centerOfMass[2]

robot.arm1.centerOfMass[3]

For example, a table T[4,3,2] (first dimension 4 entries, second dimen-

sion 3 entries, third dimension 2 entries) is mapped to the following

Variables:

T[1,1,1]

T[1,1,2]

T[1,2,1]

T[1,2,2]

T[1,3,1]

T[1,3,2]

T[2,1,1]

T[2,1,2]

T[2,3,1]

…

It might occur that not all elements of an array are present. If they are present,

they are given in consecutive order in the DCP slave description.

Table 10: Variable naming convention options

3.1.18.2 Outputs and Inputs

A DCP slave consumes inputs and provides outputs. Output values of a DCP slave are sent using

the payload field of Data PDUs. Values of several outputs can be grouped together and sent us-

ing one Data PDU. Details are given in section 3.4.5.1.

The timing characteristics for communications are defined by the configuration of the outputs.

Outputs may be sent at communication steps but must not be sent between communication

steps.

Outputs with variability = “continuous” must be sent with their respective defined communi-

cation step size.

Outputs with variability =”discrete”, may be sent at every communication step size, but

must be sent if the value has changed.

Discrete outputs may be mapped to continuous inputs, and vice versa.

Note: If a continuous output is mapped to a discrete input, zero-order-hold is implic-

itly introduced.

Note: If a discrete output is mapped to a continuous input, the exact behavior might

be determined by extrapolation algorithms used within the receiving DCP slave. Using

such configurations, the DCP integrator and master tool should be aware of the actual

behavior and subsequent effects.

Distributed Co-Simulation Protocol Specification Version 1.0

 18 / 112

3.1.18.3 Parameters

Parameters are used to change properties of a DCP slave. They can be set by the DCP master

only.

For parameters the variability shall be set to either fixed or tunable.

The values of parameters with variability = “fixed” can be set only in state CONFIGURATION
(see section 3.2.4.2).

The values of parameters with variability = “tunable” can be set at any time. The received

value of a tunable parameter shall come into effect during the next computational step of a DCP

slave in NRT operating mode. For the operating modes HRT and SRT the values are adopted im-

mediately. Values of several parameters can be grouped together and sent using one Data PDU.

Details are given in section 3.4.5.2.

If a value for a parameter is not set at all, it stays at its start value which is contained in the DCP

slave description.

Note: To ensure that multiple parameters coming into effect simultaneously, they

must be sent at once.

3.1.18.4 Structural Parameters

Structural parameters may be used to indicate variable dimensions. This is used to define e.g.

vectors and matrices.

Structural parameters have a start value and may be modified during simulation time.

3.1.18.5 Multidimensional Variables

An array variable is a data structure consisting of a collection of variables, each identified by an

array index. A variable may have a constant number of dimensions. Each dimension has a size.

A size may either be a constant or a structural parameter. Both may use a serialized start value.

The numbering of dimensions is done from left to right and from top to bottom.

Note:

For a C API: array[dim1][dim2]…[dimN], where N ∈ ℕ.

For XML: document order.

Serialization example

A =��11 �12�21 �22�31 �32� is serialized as follows:

A[0][0]=a11, memory address A,

A[0][1]=a12, memory address A+1,

A[1][0]=a21, memory address A+2,

A[1][1]=a22, memory address A+3,

A[2][0]=a31, memory address A+4,

A[2][1]=a32, memory address A+5.

Distributed Co-Simulation Protocol Specification Version 1.0

 19 / 112

3.1.19 Dependencies

The outputs of a DCP slave might depend on its inputs and parameters.

These dependencies can be described in the DCP slave description (see section 5.13.5). Addi-

tionally, the kind of dependency can be expressed, to allow for an optimized initialization of the

DCP slave.

Note: This information can be utilized to e.g. detect the presence or absence of alge-

braic loops in the configured scenario.

3.1.20 Data Type Conversions

A DCP slave shall be able to perform data type conversions for inputs and parameters as speci-

fied in Table 11. The character “x” indicates that the given conversion is allowed and feasible.

For inputs and tunable parameters, an invalid conversion shall be detected in state CONFIGURA-
TION. In that case, an error code shall be sent as a response to PDU CFG_input and PDU

CFG_tunable_parameter.

Note: Empty cells are considered as invalid conversions.

 DCP input data types

uint8 uint16 uint32 uint64 int8 int16 int32 int64 float32 float64 binary string

D
C
P
 o

u
tp

u
t

d
a
ta

 t
y
p
e
s

uint8 x x x x x x x x x
uint16 x x x x x x x
uint32 x x x x
uint64 x
int8 x x x x x x
int16 x x x x x
int32 x x x
int64 x

float32 x x
float64 x
binary x
string x

Table 11: Data type conversions

3.1.21 Native and Non-Native DCP Specification

This section defines the term native DCP specification. Native DCP means that the mapping of

PDUs to the transport protocol preserves the bit sequence. The bit sequence of PDUs is specified

in section 3.3.7. All PDUs, especially the Control PDUs, must be transferable via the chosen

transport protocol. No additional mechanisms for exchange of information, e.g. for configuration

are needed.

Note: The DCP specification for UDP/IPv4 follows native DCP, for example.

In contrast to the native DCP specification, the non-native DCP specification uses a different

mapping to associate the DCP protocol and PDUs to a transport protocol. Available mappings are

specified in section 4.

Note: The DCP specification for CAN bus follows non-native DCP, for example.

3.1.22 Transport Protocol Numbering

The transport protocols supported by this DCP specification are numbered as follows.

Distributed Co-Simulation Protocol Specification Version 1.0

 20 / 112

Transport protocol Numberhex

UDP/IPv4 0x00

rfcomm/Bluetooth 0x01

CAN based 0x02

USB (2.0) 0x03

TCP/IPv4 0x04

Table 12: Transport protocol numbering

3.1.23 Logging

The DCP supports the transmission of arbitrary log data from a DCP slave to its master. For that,

it defines two different approaches, namely log on request (LoR) and log on notification (LoN).

For LoR, log messages are stored within the DCP slave. They are picked up by the master on

request at any time. LoR supports the delivery of multiple log messages at one time.

For LoN, log messages are not stored within the DCP slave. They are transmitted to the master

immediately. LoN supports the delivery of a single log message at one time.

The exact format of a log message is defined in the DCP slave description using log templates. A

DCP slave only delivers argument values to fill into this template. The full log message is then

generated by the master.

Note: The length of all PDUs exchanged for logging may be precalculated using the

DCP slave description.

3.1.23.1 Log Mode

A log mode for specific log messages is set by the master using the PDU CFG_logging. The de-

fault value for all log messages is No logging via DCP (0). See section 3.3.3.9 for a list of valid

log modes.

3.1.23.2 Log Level

A log level is assigned to a log template in the DCP slave description. See section 3.3.3.7 for a

list of valid options.

Note: This corresponds to the status field of FMI.

3.1.23.3 Log Category

A log category is both defined and assigned to a log template in the DCP slave description.

One byte shall be reserved to identify a log category. See section 3.3.3.6 for a valid list of rang-

es.

3.2 State Machine Definitions

3.2.1 General

The state machine defined in this section is intended for use within a DCP slave. Figure 1 shows

the DCP slave state machine in UML notation.

Transitions are triggered either by PDUs of the state change family (STC) or internal signals.

The PDUs that trigger a transition are indicated with a STC prefix (see section 3.3). Internal sig-

nals that trigger a transition are indicated via the SIG prefix. Signals are DCP slave internal only

and are therefore not exchanged via DCP PDUs. All transitions are defined in section 3.2.5.

After a transition has been performed, the slave informs the master about its new state (using

the PDU NTF_state_changed)

3.2.2 Description

The state machine’s entry point is labelled with entryPoint, whereas its exit point is labelled

with exitPoint. If the software component implementing the DCP is not yet loaded, the DCP

slave does not exist yet. After unloading the software component implementing the DCP, the

DCP slave does not exist anymore.

Distributed Co-Simulation Protocol Specification Version 1.0

 21 / 112

Figure 1: DCP slave state machine

Distributed Co-Simulation Protocol Specification Version 1.0

 22 / 112

3.2.3 Superstates

The following sections describe the general behavior of the defined superstates.

3.2.3.1 Normal Operation

The states CONFIGURATION, CONFIGURING, PREPARING, PREPARED, CONFIGURED, INITIALIZING,

INITIALIZED, SENDING_I, RUNNING, COMPUTING, COMPUTED, SENDING_D, STOPPING, and STOPPED
belong to a super-state called “Normal Operation”. This superstate assumes that the DCP slave

operates as intended by the DCP slave provider.

3.2.3.2 Error

The states ERRORHANDLING and ERRORRESOLVED belong to a superstate Error. This superstate is

used to handle exceptional conditions that are defined by the DCP slave provider.

3.2.3.3 Initialization

The DCP superstate Initialization is used by a DCP master to align multiple DCP slaves be-

fore running a simulation. The states CONFIGURED, INITIALIZING, INITIALIZED and SEND-
ING_I together with their transitions allow the master to apply iterative algorithms to reach a

consistent initial state over all slaves within a scenario. Initialization is independent from abso-

lute time and the chosen operating mode.

3.2.3.4 Run

The states SYNCHRONIZING, SYNCHRONIZED and RUNNING belong to superstate Run. In contrast to

superstate Initialization simulation time can elapse.

For real-time operating modes SRT and HRT simulation time is running and data is exchanged

using the defined step size. For non-real-time operating mode NRT advance of simulation time

and data exchange are handled as described in superstate NonRealTime.

The two states SYNCHRONIZING and RUNNING allow for distinction between a possible initial tran-

sient oscillation phase and the actual simulation experiment. By transitioning to state SYNCHRO-
NIZED the slave indicates that it has finished the transient oscillation phase.

Note: For example, when the control loop between an engine test bench and a simu-

lation model is closed, typically initial transient oscillations occur. The actual simula-

tion experiment should only be started after this initial transient oscillation phase.

The initial transient oscillation phase takes place in state SYNCHRONIZING. As soon as

this phase is finished, the slave transitions to state SYNCHRONIZED. As soon as all

slaves are in state SYNCHRONIZED, the master triggers the transition to state RUNNING.

This leads to a defined point in time when the actual simulation experiment starts.

For NRT operating mode, from each state of the superstate Run transition to state COMPUTING of

superstate NonRealTime is possible. On reentry from state SENDING_D to superstate Run the en-

try state is the last state from which the superstate Run was left. This is indicated by the History

element in the state chart (see Figure 1).

3.2.3.5 NonRealTime

The states COMPUTING, COMPUTED, and SENDING_D belong to superstate NonRealTime.

The states of NonRealTime are used for triggering calculation, advance of simulation time, and

data exchange.

Note: Consider 1 master and 2 slaves A and B, including slave-to-slave communica-

tion.

Initially all slaves are in state RUNNING.

The master sends PDU STC_do_step to both slaves.

Slave A changes to state COMPUTING, calculates fast, moves on to COMPUTED.

If no state SENDING_D would exist, he would immediately send its outputs to slave B

and changes to state RUNNING.

Distributed Co-Simulation Protocol Specification Version 1.0

 23 / 112

Slave B might receive this data before having received the STC_do_step from the

master, due to network delay, latency, etc.

Thus, he would calculate with input data not consistent to current simulation time in-

stance. The state SENDING_D prevents this.

3.2.3.6 Stoppable

The states CONFIGURING, PREPARING, PREPARED, CONFIGURED, INITIALIZING, INITIALIZED,

RUNNING, COMPUTING, COMPUTED, SENDING_I, SENDING_D are grouped in a super-state “Stoppa-

ble”. This means that a slave is allowed to transit to the state Stopping from one of these states.

3.2.4 States

Table 13 lists the states of the state machine together with their assigned IDs.

State name State idhex

ALIVE 0x00

CONFIGURATION 0x01

PREPARING 0x02

PREPARED 0x03

CONFIGURING 0x04

CONFIGURED 0x05

INITIALIZING 0x06

INITIALIZED 0x07

SENDING_I 0x08

SYNCHRONIZING 0x09

SYNCHRONIZED 0x0A

RUNNING 0x0B

COMPUTING 0x0C

COMPUTED 0x0D

SENDING_D 0x0E

STOPPING 0x0F

STOPPED 0x10

ERRORHANDLING 0x11

ERRORRESOLVED 0x12

Table 13: State IDs

3.2.4.1 State ALIVE

General

The DCP slave is connected to communication media and waits for

a DCP master to take ownership. While being in this state, the DCP

slave is not assigned to a DCP master yet. A DCP master may take

control of a DCP slave by sending the PDU STC_register.

Note: A DCP slave in this state cannot be influenced in

any way, except a DCP master taking ownership.

Preconditions The DCP slave is off.

Allowed Actions

• Exchange of DCP control and notification PDUs

• Report state

Table 14: State ALIVE

Distributed Co-Simulation Protocol Specification Version 1.0

 24 / 112

3.2.4.2 State CONFIGURATION

General

A DCP master has taken ownership of the DCP slave.

In this state, the DCP slave shall accept configuration request PDUs

(CFG). A configuration received in this state shall be applied before

reaching the state CONFIGURED at the latest.

A DCP master may release a DCP slave by sending the PDU

STC_deregister.

Preconditions

Any configurations necessary to load the DCP slave and connect it

to a given media are set.

Allowed Actions

• Exchange of DCP control and notification PDUs

• Report state

• Configure

• Instantiate model or RT system

Table 15: State CONFIGURATION

3.2.4.3 State PREPARING

General

Slave must prepare the transport protocol to allow to connect

and/or to receive data. This needs to be done for every received

CFG_source_network_information.

Preconditions

All configurations necessary for real-time and non-realtime data

exchange are set by the master or in the DCP slave description.

Allowed Actions

• Exchange of DCP control and notification PDUs

• Report state

Table 16: State PREPARING

3.2.4.4 State PREPARED

General

The slave has prepared the transport protocol and is ready to

communicate or establish connections.

Preconditions

None.

Allowed Actions

• Exchange of DCP control and notification PDUs

• Report state

Table 17: State PREPARED

3.2.4.5 State CONFIGURING

General

For connection oriented transport protocols a connection is estab-

lished for every CFG_target_network_information. For connection-

less transport protocols no specific actions are necessary.

The DCP slave realizes a start condition depending on parameters,

but not on input values.

Preconditions

All configurations necessary for real-time and non-realtime data

exchange are set by the master or in the DCP slave description.

Allowed Actions

• Exchange of DCP control and notification PDUs

• Report state

• Apply configuration settings to model or RT system

Table 18: State CONFIGURING

Distributed Co-Simulation Protocol Specification Version 1.0

 25 / 112

3.2.4.6 State CONFIGURED

General

At entry to this state coming from CONFIGURING, a start condition

depending on parameters, but not on input values has been real-

ized by the DCP slave.

The DCP slave is ready to initialize with other DCP slaves.

Note: If node time synchronization is required (e.g. for

HRT operating mode), it must have been done before

leaving this state via PDU STC_run because that PDU

includes a time value.

Preconditions Start condition is realized.

Allowed Actions

• Exchange of DCP Control and Notification PDUs

• Report state

• Receiving of Data PDUs

• Maintain initialized condition of model or RT system

Table 19: State CONFIGURED

3.2.4.7 State INITIALIZING

General

In INITIALIZING an internal initial state of the DCP slave, which is

consistent to its inputs, shall be established and the outputs shall

be computed. The input values from the most recent data PDU are

used for internal computation. If no inputs have been received,

start values defined in DCP slave description shall be used.

Simulation models: Simulation time stays at start time, simulation

models are not computed over time, but at start time.

When the DCP slave finished initializing, it issues SIG_initialized

which triggers the transition to leave state INITIALIZING.

If the slave fails to keep the consistent internal initial state, it must

perform the transition to the superstate Error.

Note: This state refers to the FMI state “initialization

mode”.

Preconditions None.

Allowed Actions

• Exchange of DCP Control and Notification PDUs

• Receiving Data PDUs

• Report state

• Synchronize model or RT system within scenario

• Indicate end of initializing

Table 20: State INITIALIZING

Distributed Co-Simulation Protocol Specification Version 1.0

 26 / 112

3.2.4.8 State INITIALIZED

General

In INITIALIZED an internal initial state of the DCP slave, which is

consistent to its inputs, is established and the outputs are availa-

ble.

In INITIALIZED the slave remains in its consistent internal initial

state. If the slave fails to keep the consistent internal initial state,

it must perform the transition to the superstate Error.

Preconditions None.

Allowed Actions

• Exchange of DCP Control and Notification PDUs

• Receiving Data PDUs

• Report state

• Maintain synchronized condition of model or RT system

within scenario

Table 21: State INITIALIZED

3.2.4.9 State SENDING_I

General In this state the DCP slave sends its outputs.

Preconditions None

Allowed Actions

• Exchange of DCP Control and Notification PDUs

• Sending and receiving of Data PDUs

• Report state

• Indicate end of sending

Table 22: State SENDING_I

3.2.4.10 State SYNCHRONIZING

General For real-time operating modes SRT and HRT: The DCP slave is

running and inputs/outputs are exchanged. Simulation time is

mapped to absolute time.

For non-real-time operating mode (NRT): Simulation time is not

advanced but can be increased by transitioning to the NRT-specific

state COMPUTING. The DCP slave can receive inputs.

This state is used to account for initial transient oscillations.

Preconditions None

Allowed Actions

• Exchange of DCP Control and Notification PDUs

• Sending and receiving of Data PDUs

• Report state

• Indicate end of sending

Table 23: State SYCHRONIZING

Distributed Co-Simulation Protocol Specification Version 1.0

 27 / 112

3.2.4.11 State SYNCHRONIZED

General For real-time operating modes SRT and HRT: The DCP slave is

running and inputs/outputs are exchanged. Simulation time is

mapped to absolute time.

For non-real-time operating mode (NRT): Simulation time is not

advanced but can be increased by transitioning to the NRT-specific

state COMPUTING. The DCP slave can receive inputs.

Preconditions The observed initial transient oscillations have faded out.

Allowed Actions

• Exchange of DCP Control and Notification PDUs

• Sending and receiving of Data PDUs

• Report state

• Indicate end of sending

Table 24: State SYNCHRONIZED

3.2.4.12 State RUNNING

General

For real-time operating modes SRT and HRT: The DCP slave is

running and inputs/outputs are exchanged. Simulation time is

mapped to absolute time.

For non-real-time operating mode (NRT): Simulation time is not

advanced but can be increased by transitioning to the NRT-specific

state COMPUTING. The DCP slave can receive inputs.

The actual simulation experiment is executed in this state.

Preconditions None.

Allowed Actions

• Exchange of DCP Control and Notification PDUs

• Receiving of Data PDUs in NRT operating mode

• Receiving and sending Data PDUs in SRT and HRT operating

modes

• Report state

Table 25: State RUNNING

3.2.4.13 State COMPUTING

General

In this state one computational step is performed. The values from

the most recent Data PDUs are used for internal computation. The

virtual simulation time is incremented by the number of steps giv-

en in the field steps of the PDU STC_do_step multiplied by resolu-

tion.

Note: This state applies to NRT (non-real-time) operat-

ing mode only.

Preconditions The DCP slave is set to NRT operating mode.

Allowed Actions

• Exchange of DCP Control and Notification PDUs

• Report state

• Indicate end of computational step

Table 26: State COMPUTING

Distributed Co-Simulation Protocol Specification Version 1.0

 28 / 112

3.2.4.14 State COMPUTED

General

In this state all computations were performed and the DCP slave is

ready to send computation results. The DCP slave can receive in-

puts.

Note: This state applies to NRT (non-real-time) operat-

ing mode only.

Preconditions The DCP slave is set to NRT operating mode.

Allowed Actions

• Exchange of DCP Control and Notification PDUs

• Receiving of Data PDUs

• Report state

Table 27: State COMPUTED

3.2.4.15 State SENDING_D

General

In this state the DCP slave sends its outputs.

Note: This state applies to NRT (non-real-time) operat-

ing mode only.

Preconditions The DCP slave is set to NRT operating mode.

Allowed Actions

• Exchange of DCP Control and Notification PDUs

• Sending and receiving of Data PDUs

• Report state

• Indicate end of sending

Table 28: State SENDING_D

3.2.4.16 State STOPPING

General

The simulation run has finished and is now being stopped.

Preconditions None.

Allowed Actions

• Exchange of DCP Control and Notification PDUs

• Report state

• Indicate halt of model or RT system

Table 29: State STOPPING

3.2.4.17 State STOPPED

General The DCP slave waits for further Control PDUs.

Preconditions The DCP slave has come to a stop.

Allowed Actions

• Exchange of DCP control and notification PDUs

• Report state

• Maintain condition of model or RT system

Table 30: State STOPPED

Distributed Co-Simulation Protocol Specification Version 1.0

 29 / 112

3.2.4.18 State ERRORHANDLING

General The DCP slave tries to resolve an error.

Preconditions A fault is detected.

Allowed Actions

• Exchange of DCP control and notification PDUs

• Report state

• Resolve occurred error using error handling routines

• Ensure safe condition of model or RT system

• In case of success, transition self-reliantly to state ER-

RORRESOLVED.

Note: For detailed description of the DCP error handling

procedure, see section 3.4.10.

Table 31: State ERRORHANDLING

3.2.4.19 State ERRORRESOLVED

General

The DCP slave has finished its error handling procedure and suc-

cessfully mitigated the hazardous condition.

Preconditions

The DCP slave has handled the occurred error and mitigated the

hazardous condition.

Allowed Actions

• Exchange of DCP control and notification PDUs

• Report state

• Maintain safe condition of model or RT system until the DCP

master either resets, deregisters or terminates the DCP

slave.

Note: For detailed description of the DCP error handling

procedure, see section 3.4.10.

Table 32: State ERRORRESOLVED

3.2.5 Transitions

The following subsections describe the valid state transitions of the DCP slave state machine.

3.2.5.1 Transition entry

General This transition marks the entry point to the state machine.

The DCP software is loaded on the execution platform, therefore it

transforms into a DCP slave.

Preconditions None

Trigger Load the DCP software.

States • entryPoint -> ALIVE

Table 33: Transition entry

Distributed Co-Simulation Protocol Specification Version 1.0

 30 / 112

3.2.5.2 Transition exit

General This transition marks the exit point from the state machine.

The DCP software is unloaded from the execution platform.

In case of an error, the occurred error either (1) could not be han-

dled and the DCP software is unloaded from the execution plat-

form, or (2) another error occurred before resetting the DCP slave.

Preconditions None or unrecoverable error.

Trigger SIG_exit

States • ALIVE -> exitPoint

• ERRORHANDLING -> exitPoint

• ERRORRESOLVED -> exitPoint

Table 34: Transition exit

3.2.5.3 Transition register

General A DCP master shall register a DCP slave to integrate it into a simu-

lation scenario and use it for a simulation task.

Preconditions The DCP slave is currently deregistered.

The DCP slave received a STC_register PDU.

Trigger STC_register

States • ALIVE -> CONFIGURATION

Table 35: Transition register

3.2.5.4 Transition prepare

General The transport protocol should be prepared.

Preconditions All configuration information was received by the DCP slave.

Trigger STC_prepare

States • CONFIGURATION -> PREPARING

Table 36: Transition prepare

3.2.5.5 Transition prepared

General The preparation of the transport protocol has finished.

Preconditions None.

Trigger SIG_prepared

States • PREPARING -> PREPARED

Table 37: Transition prepared

3.2.5.6 Transition deregister

General A DCP master deregisters a DCP slave to release it from a simula-

tion scenario.

Preconditions The DCP slave is registered to a DCP master.

Trigger STC_deregister

States • CONFIGURATION -> ALIVE

• STOPPED -> ALIVE

• ERRORRESOLVED -> ALIVE

Table 38: Transition deregister

Distributed Co-Simulation Protocol Specification Version 1.0

 31 / 112

3.2.5.7 Transition configure

General The DCP slave has received configuration information and shall

start to realize the configuration.

Preconditions None.

Trigger STC_configure

States • PREPARED -> CONFIGURING

Table 39: Transition configure

3.2.5.8 Transition configured

General The DCP slave realized a configuration.

Preconditions None.

Trigger SIG_configured

States • CONFIGURING -> CONFIGURED

Table 40: Transition configured

3.2.5.9 Transition initialize

General The DCP slave starts to establish a consistent initial state with all

other connected DCP slaves.

Preconditions None.

Trigger STC_initialize

States • CONFIGURED -> INITIALIZING

Table 41: Transition initialize

3.2.5.10 Transition initialized

General The DCP slave has established a consistent initial state with other

connected DCP slaves.

Preconditions None.

Trigger SIG_initialized

States • INITIALIZING -> INITIALIZED

Table 42: Transition initialized

3.2.5.11 Transition send_outputs_i

General The DCP slave sends its initialization results.

Preconditions The DCP slave received a STC_send_outputs PDU.

The DCP slave is either in NRT (non-real-time) operating mode or

in Initialization superstate.

Trigger STC_send_outputs

States • INITIALIZED -> SENDING_I

Table 43: Transition send_outputs

Distributed Co-Simulation Protocol Specification Version 1.0

 32 / 112

3.2.5.12 Transition run

General This transition indicates the start of the simulation run.

Preconditions The DCP master has determined that simulation shall start either

now or at a given time.

Trigger STC_run

States • CONFIGURED -> RUNNING

Note: Even if the field time within the PDU STC_run

contains a time > now, the DCP slave transitions im-

mediately to state RUNNING. In state RUNNING, it

waits for time==now and then starts the simulated

time.

Table 44: Transition run

3.2.5.13 Transition stop (STC_stop)

General The DCP master tells the DCP slave to halt the simulation or abort

the configuration or initialization phase by sending PDU STC_stop.

The DCP slave proceeds to STOPPING.

Preconditions None.

Trigger STC_stop

States • PREPARING -> STOPPING
• PREPARED -> STOPPING
• CONFIGURING -> STOPPING

• CONFIGURED -> STOPPING

• SYNCHRONIZING -> STOPPING
• SYNCHRONIZED -> STOPPING
• RUNNING -> STOPPING

• INITIALIZING -> STOPPING

• INITIALIZED -> STOPPING

• SENDING_I -> STOPPING

• COMPUTING -> STOPPING

• COMPUTED -> STOPPING

• SENDING_D -> STOPPING

Table 45: Transition stop by PDU

3.2.5.14 Transition stop (SIG_stop)

General The DCP slave wants to stop the simulation.

Preconditions The DCP slave raised a SIG_stop signal.

Note: A DCP slave may request simulation stop from

the DCP master by triggering SIG_stop. The master no-

tices the state change of the DCP slave and reacts ac-

cordingly, e.g. may communicate STC_stop to other

DCP slaves of the same scenario.

Trigger SIG_stop

States • SYNCHRONIZING -> STOPPING

• SYNCHRONIZED -> STOPPING

• RUNNING -> STOPPING

Table 46: Transition stop by SIG

Distributed Co-Simulation Protocol Specification Version 1.0

 33 / 112

3.2.5.15 Transition do_step

General The DCP slave starts one computational step.

Preconditions The DCP slave is in NRT (non-real-time) operating mode.

Trigger STC_do_step

States • SYNCHRONIZING -> COMPUTING

• SYNCHRONIZED -> COMPUTING

• RUNNING -> COMPUTING

Table 47: Transition do_step

3.2.5.16 Transition step_done

General The DCP slave has finished one computational step.

Preconditions The DCP slave is in NRT (non-real-time) operating mode.

Trigger SIG_step_done

States • COMPUTING -> COMPUTED

Table 48: Transition step_done

3.2.5.17 Transition send_outputs_d

General The DCP slave sends its computational results.

Preconditions The DCP slave received a STC_send_outputs PDU.

The DCP slave is either in NRT (non-real-time) operating mode or

in Initialization superstate.

Trigger STC_send_outputs

States • COMPUTED -> SENDING_D

Table 49: Transition send_outputs

3.2.5.18 Transition send_complete

General The DCP slave has finished sending its computational results.

Preconditions The DCP slave is either in NRT (non-real-time) operating mode or

in Initialization superstate.

Trigger SIG_send_complete

States SENDING_D -> RUNNING

SENDING_D -> SYNCHRONIZING

SENDING_D -> SYNCHRONIZED
SENDING_I -> CONFIGURED

Table 50: Transition send_complete

3.2.5.19 Transition stopped

General The DCP slave and its underlying model or real-time system has

come to a halt.

Preconditions None.

Trigger SIG_stopped

States • STOPPING -> STOPPED

Table 51: Transition stopped

Distributed Co-Simulation Protocol Specification Version 1.0

 34 / 112

3.2.5.20 Transition synchronize

General The DCP slave enters the Run superstate.

Preconditions None.

Trigger STC_run

States • CONFIGURED -> SYNCHRONIZING

Table 52: Transition synchronize

3.2.5.21 Transition synchronized

General The DCP slave indicates that synchronization is finished.

Preconditions DCP slave internal detection of synchronization.

Trigger SIG_synchronized

States • SYNCHRONIZING -> SYNCHRONIZED

Table 53: Transition synchronized

3.2.5.22 Transition reset

General The DCP slave is commanded by the DCP master to go back to

state CONFIGURATION. All previously configured settings are re-

set, this also includes shutdown of connections configured by PDUs

of the configuration family.

Note: Transport protocol specific actions might be nec-

essary, e.g. closing connections and ports for TCP/IPv4.

Preconditions None.

Trigger STC_reset

States • STOPPED -> CONFIGURATION

• ERRORRESOLVED -> CONFIGURATION

Table 54: Transition reset

Distributed Co-Simulation Protocol Specification Version 1.0

 35 / 112

3.2.5.23 Transition error

General This transition represents the start of an error handling routine.

Preconditions The DCP slave diagnoses an error.

Trigger SIG_error

States • CONFIGURATION -> ERRORHANDLING

• PREPARING -> ERRORHANDLING
• PREPARED -> ERRORHANDLING
• CONFIGURING -> ERRORHANDLING

• CONFIGURED -> ERRORHANDLING

• INITIALIZING -> ERRORHANDLING

• INITIALIZED -> ERRORHANDLING

• SENDING_I -> ERRORHANDLING

• SYNCHRONIZING -> ERRORHANDLING
• SYNCHRONIZED -> ERRORHANDLING

• RUNNING -> ERRORHANDLING

• COMPUTING -> ERRORHANDLING

• COMPUTED -> ERRORHANDLING

• SENDING_D -> ERRORHANDLING

• STOPPING -> ERRORHANDLING

• STOPPED -> ERRORHANDLING

Table 55: Transition error

3.2.5.24 Transition resolved

General The occurred error was successfully handled.

Preconditions The DCP slave received a resolved signal.

Trigger SIG_resolved

States • ERRORHANDLING -> ERRORRESOLVED

Table 56: Transition resolved

Distributed Co-Simulation Protocol Specification Version 1.0

 36 / 112

3.3 PDU Definitions

3.3.1 General

Protocol Data Units (PDUs) are transmitted via abstract channels. In practice, a communication

medium must be used. DCP PDUs are categorized in families. Configuration request (CFG), state

change request (STC), and information request (INF) PDUs belong to the family of Request

PDUs. Together with the family of response (RSP) PDUs they make up the family of Control

PDUs. The families of Notification PDUs (NTF) and Data PDUs (DAT) complete the range of avail-

able PDU families.

Control PDUs are exchanged between DCP master and DCP slaves. PDUs of the families CFG,

STC and INF are only sent from the DCP master to its DCP slaves and are acknowledged by the

DCP slaves via RSP PDUs. Data PDUs are not acknowledged.

If the DCP master sets up a scenario where the master relays Data between DCP slaves, then

also a DCP master may send and receive Data PDUs.

Note: Data PDUs are not acknowledged. To ensure that corruption, loss, reordering,

etc. of Data PDUs is avoided, a reliable communication medium must be used. See

also section 10-F.

3.3.2 Structuring

All PDUs are structured using fields. A field is defined by its name, a DCP compliant data type,

and the position of the field within the PDU, given in bytes. Table 57 provides an overview of all

specified PDU fields and their corresponding data types. Concrete PDUs are distinguished by their

type (field: type_id). For all PDUs, the type_id is available at the beginning at position zero with

a length of 1 byte. A specific PDU does not contain all remaining fields, but only those required

for the specific use, as can be seen in Table 62. The upcoming subsections give detailed infor-

mation about each PDU.

Distributed Co-Simulation Protocol Specification Version 1.0

 37 / 112

Field Data type specification

data_id uint16

denominator uint32

error_code uint16

exp_seq_id uint16

log_category uint8

log_level uint8

log_max_num uint8

log_mode uint8

log_template_id uint8

log_arg_val byte[]

log_entries byte[]

major_version uint8

minor_version uint8

numerator uint32

op_mode uint8

parameter_vr uint64

param_id uint16

payload byte[]

pdu_seq_id uint16

pos uint16

receiver uint8

resp_seq_id uint16

scope uint8

sender uint8

slave_uuid unsigned byte[16]

source_data_type uint8

source_vr uint64

time int64

state_id uint8

steps uint32

target_vr uint64

transport_protocol uint8

type_id uint8

Table 57: Field data types

3.3.3 PDU Fields

3.3.3.1 Sequence Identifier

The PDU sequence id (fields: pdu_seq_id, resp_seq_id, exp_seq_id). For further information

see section 3.4.1.

3.3.3.2 Slave Identifier

Each DCP slave within a given simulation scenario identifies itself uniquely by using a DCP slave
id. This DCP slave id is assigned by the master. The DCP id zero (“0”) shall be reserved for the

master. The two PDU fields sender and receiver use this DCP slave id.

In the sender field, the id of the slave that sends the PDU is given. In the receiver field, the id of

the slave that shall receive the PDU is given.

Distributed Co-Simulation Protocol Specification Version 1.0

 38 / 112

3.3.3.3 Data Identifier

The field data_id is the unique identifier of the payload data.

3.3.3.4 Denominator

The field denominator holds the integer value for the denominator of the fraction that defines

resolution.

3.3.3.5 Error Code

The error code is a unique identifier for defined DCP errors.

3.3.3.6 Log Category

The log category may be used by a DCP slave vendor to categorize log messages. Table 58 gives

the possible options.

Log category Definition

0 Predefined, used to address all available log categories.

Note: CFG_logging with log category “0” will affect the config-

uration of all categories of a slave.

Note: A DCP slave receiving INF_log_request with log category

“0” will consider all categories.

1-255 These log categories may be specified in the DCP slave description file.

Subsequently they may be used in a log template.

Table 58: Log categories

3.3.3.7 Log Level

The log level may be used in a log template in the DCP slave description file.

Note: This corresponds to the status field of FMI.

Log level Value Definition

Fatal 0 The simulation cannot be continued. The DCP slave will transition to

the error superstate.

Note: An example for this log level are several missed

heartbeats, exceeding the allowed specified time out limits.

Error 1 The current action cannot be continued.

Note: An example for this log level is a wrong UUID in

STC_register.

Warning 2 The current action can be continued, but simulation results could be

affected.

Note: An example for this log level is a value out of

bounds.

Information 3 This log level reflects the status of a DCP slave.

Note: An example for this log level is initialization for 40%

finished.

Debug 4 This log level is intended for debug information.

Note: An example for this log level is step size for data

identifier 4 set to 100.

Table 59: Log level definitions

Distributed Co-Simulation Protocol Specification Version 1.0

 39 / 112

3.3.3.8 Log Maximum Number

This field represents the maximum number of requested log entries.

3.3.3.9 Log Mode

This field defines the mode for log functionality. Table 60 gives the available options.

Value Definition

0 No logging via DCP

1 Log on request

2 Log on notification

Table 60: Log modes

3.3.3.10 Log Argument Values

A byte array containing the argument values as specified in a template of the DCP slave descrip-

tion.

3.3.3.11 Log Template Identifier

An integer value representing the template identifier, referring to a template in the DCP slave

description.

3.3.3.12 Log Entries

A byte array containing one or more log entries. See section 3.3.7.30, Table 95 for details.

3.3.3.13 Major Version

The field major_version gives the major version of the DCP to be used (see section 3.1.2).

3.3.3.14 Minor Version

The field minor_version gives the minor version of the DCP to be used (see section 3.1.2).

3.3.3.15 Numerator

The field numerator holds the integer value for the numerator of the fraction that defines the

resolution (see section 3.1.16).

3.3.3.16 Operating Mode

The field op_mode holds the operation mode as defined in section 3.1.15 the DCP slave must use.

3.3.3.17 Parameter Value Reference

The field parameter_vr gives the value reference of the parameter (see section 3.1.18.3).

3.3.3.18 Parameter Identifier

The field param_id gives the unique identifier of the parameter referred to in the PDU (see sec-

tion 3.1.18.3).

3.3.3.19 Payload

The field payload is used to hold information that is not fixed in general but must be configured

using DCP mechanisms.

3.3.3.20 Position

The field pos gives the position of a data value in the PDU Data payload field in byte (see section

3.4.5).

3.3.3.21 Scope

The field scope gives the scope of validity for a configuration of a specified PDU Data payload

field as defined in section 3.4.6.

3.3.3.22 Slave UUID

The field slave_uuid holds the universal unique identifier of a slave. It is defined as an un-

signed byte array of length 16. The string representation of slave_uuid is defined according to

RFC4122 [5]. It is not required that the content of the field slave_uuid follows RFC4122.

Distributed Co-Simulation Protocol Specification Version 1.0

 40 / 112

3.3.3.23 Source Data Type

The field source_data_type holds the data type of a value in a PDU Data as defined in section

3.1.10.

3.3.3.24 Source Value Reference

The field source_vr gives the value reference of the output (see section 3.1.18.2).

3.3.3.25 State Identifier

The field state_id gives the current state of the slave as defined in Table 13.

3.3.3.26 Steps

The content of the field steps depends on the chosen operating mode. In PDU STC_do_step it

defines the number of computational steps the slave must perform in state COMPUTING. In PDU

CFG_steps it defines the communication step size of an output for SRT and HRT operating modes

(see section 3.1.15).

3.3.3.27 Target Value Reference

The field target_vr gives the value reference of the input (see section 3.1.18.2).

3.3.3.28 Transport Protocol

In the field transport_protocol the unique identifier of the transport protocol is given. Possible

options are defined in section 3.1.22.

3.3.3.29 Type Identifier

In the field type_id the unique identifier of the PDU is given. An overview of all assigned type

identifiers is given in section 3.3.5, the type identifier range distribution is given in section 3.3.4.

3.3.3.30 Time

The time field represents the absolute time (see section 3.1.14.1) as a 64-bit signed integer

value.

3.3.4 PDU Type Identifier Range Distribution

The field type_id contains a unique number for each PDU type. For DCP, all PDU type_ids are

assigned as stated in section 3.3.5. However, the following numbering scheme applies, depend-

ent on the PDU family (also see sections 3.1.7).

PDU group Start End

(not in use) 0x00 0x00

State change (STC) 0x01 0x1F

Configuration (CFG) 0x20 0x7F

Information (INF) 0x80 0xAF

Response (RSP) 0xB0 0xDF

Notification (NTF) 0xE0 0xEF

Data (DAT) 0xF0 0xFF

Table 61: PDU type identifier range distribution

3.3.5 Generic PDU Structure

The following Table 62 defines a generic PDU structure for native DCP.

D
is

tr
ib

u
te

d
 C

o
-S

im
u
la

ti
o
n
 P

ro
to

c
o
l

S
p
e
c
if
ic

a
ti
o
n
 V

e
rs

io
n
 1

.0

4
1
 /

 1
1
2

T
a
b

le
 6

2
:

G
e
n

e
r
ic

 P
D

U
 s

tr
u

c
tu

r
e

ty
p
e
_
id

p
d
u
_
s
e
q
_
id

re
s
p
_
s
e
q
_
id

e
x
p
_
s
e
q
_
id

s
e
n
d
e
r

re
c
e
iv

e
r

p
a
ra

m
_
id

d
a
ta

_
id

p
o
s

ta
rg

e
t_

v
r

s
o
u
rc

e
_
v
r

s
o
u
rc

e
_
d
a
ta

_
ty

p
e

tr
a
n
s
p
o
rt

_
p
ro

to
c
o
l

s
ta

te
_
id

n
u
m

e
ra

to
r

d
e
n
o
m

in
a
to

r

s
te

p
s

o
p
_
m

o
d
e

e
rr

o
r_

c
o
d
e

lo
g
_
c
a
te

g
o
ry

lo
g
_
le

v
e
l

lo
g
_
m

o
d
e

lo
g
_
m

a
x
_
n
u
m

lo
g
_
e
n
tr

ie
s

lo
g
_
te

m
p
la

te
_
id

lo
g
_
a
rg

_
v
a
l

p
a
ra

m
e
te

r_
v
r

m
a
jo

r_
v
e
rs

io
n

m
in

o
r_

v
e
rs

io
n

p
a
y
lo

a
d

s
c
o
p
e

s
la

v
e
_
u
u
id

ti
m

e

[m
e
d
iu

m
 s

p
e
c
if
ic

]

CFG_time_res 0x20 y y y y

CFG_steps 0x21 y y y y

CFG_input 0x22 y y y y y y

CFG_output 0x23 y y y y y

CFG_clear 0x24 y y

CFG_target_network_information 0x25 y y y y y

CFG_source_network_information 0x26 y y y y y

CFG_parameter 0x27 y y y y y

CFG_tunable_parameter 0x28 y y y y y y

CFG_param_network_information 0x29 y y y y y

CFG_logging 0x2A y y y y y

CFG_scope 0x2B y y y y

STC_register 0x01 y y y y y y y

STC_deregister 0x02 y y y

STC_prepare 0x03 y y y

STC_configure 0x04 y y y

STC_initialize 0x05 y y y

STC_run 0x06 y y y y

STC_do_step 0x07 y y y y

STC_send_outputs 0x08 y y y

STC_stop 0x09 y y y

STC_reset 0x0A y y y

INF_state 0x80 y y

INF_error 0x81 y y

INF_log 0x82 y y y y

RSP_ack 0xB0 y y

RSP_nack 0xB1 y y y y

RSP_state_ack 0xB2 y y y

RSP_error_ack 0xB3 y y y

RSP_log_ack 0xB4 y y y y y y

NTF_state_changed 0xE0 y y

NTF_log 0xE1 y y y y

DAT_input_output 0xF0 y y y

DAT_parameter 0xF1 y y y

DCP Fields

Data (DAT)

P
ro

to
c
o
l
D

a
ta

 U
n
it
 (

P
D

U
)

State change

(STC)

Notification (NTF)

Response

(RSP)

C
o
n
tr

o
l

Information

(INF)

R
e
q
u
e
s
t

Configuration

(CFG)

Distributed Co-Simulation Protocol Specification Version 1.0

 42 / 112

3.3.6 Allowed PDUs per State

Table 63 defines the allowed PDUs per state. If a PDU is not allowed within a certain state, e.g. a

RSP_nack PDU including an error_code may be sent. Alternatively, the DCP slave may also go

to an ERROR state.

The following table specifies the permissible PDUs to be sent or received for each state.

PDUs

States

A
L
I
V
E

C
O
N
F
I
G
U
R
A
T
I
O
N

P
R
E
P
A
R
I
N
G

P
R
E
P
A
R
E
D

C
O
N
F
I
G
U
R
I
N
G

C
O
N
F
I
G
U
R
E
D

I
N
I
T
I
A
L
I
Z
I
N
G

I
N
I
T
I
A
L
I
Z
E
D

S
E
N
D
I
N
G
_
I

S
Y
N
C
H
R
O
N
I
Z
I
N
G

S
Y
N
C
H
R
O
N
I
Z
E
D

R
U
N
N
I
N
G

C
O
M
P
U
T
I
N
G

C
O
M
P
U
T
E
D

S
E
N
D
I
N
G
_
D

S
T
O
P
P
I
N
G

S
T
O
P
P
E
D

E
R
R
O
R
H
A
N
D
L
I
N
G

E
R
R
O
R
R
E
S
O
L
V
E
D

STC_register R

STC_deregister R R R

STC_prepare R

STC_configure R

STC_initialize R

STC_run R

STC_do_step 1

STC_send_outputs R 1

STC_stop R R R R R R R R R R R R R

STC_reset R R

RSP_ack S S S S S S S S S S S S S S S S S S S

RSP_nack S S S S S S S S S S S S S S S S S S S

RSP_state_ack S S S S S S S S S S S S S S S S S S S

RSP_error_ack S S

RSP_log_ack S S S S S S S S S S S S S S S S S S

NTF_state_changed S S S S S S S S S S S S S S S S S S S

NTF_log S S S S S S S S S S S S S S S S S S

INF_state R R R R R R R R R R R R R R R R R R R

INF_error R R

INF_log R R R R R R R R R R R R R R R R R R

CFG_steps 2

CFG_time_res R

CFG_input R

CFG_output R

CFG_clear R

CFG_target_network_information R

CFG_source_network_information R

CFG_tunable_parameter R

CFG_parameter R

CFG_param_network_information R

CFG_logging R

CFG_scope R

DAT_input_output R 3 R 6 6 6 6 6 6 7 4 4 4 4

DAT_parameter R R R 5 5 5 5 5 5 5 4 4 4 4

Table 63: Allowed PDUs per state

Distributed Co-Simulation Protocol Specification Version 1.0

 43 / 112

The literals in the previous table have the following meaning:

Literal Meaning

S Sending of this PDU is allowed

R Receiving of this PDU is allowed

X Sending and receiving of this PDU is allowed

1 Receiving is only allowed in non-real time operating mode

2 Receiving is only allowed in real time and soft real time operating mode

3 A slave may receive DAT_input_output in this state, but the receiver

might not consider them till it changes to INITIALIZING or RUNNING.

The values from the most recent data PDU are used for internal compu-

tation. As soon as it has finished its internal computation and just be-

fore the state is left, the current output values are sent in a

DAT_input_output.

4 Receiving of data PDUs is allowed, but the received data is not consid-

ered.

Note: Example: this might happen in case of slave to slave

data transfer. The master might have sent STC_stop to a

slave which receives DAT_input_output from a slave which

is still in state RUNNING.

5 A slave may receive DAT_parameter in this state.

DAT_parameter must only contain parameters with variability tunable.

• In NRT mode, the received values must not be considered until

the DCP slave changes to COMPUTING. The values from the most

recent data PDU are used for internal computation.

• In SRT or HRT mode the values from the most recent data PDU

are used for internal computation.

6 A slave may receive DAT_input_output in this state.

• In NRT mode, the received values must not be considered until

the DCP slave changes to COMPUTING. The values from the most

recent data PDU are used for internal computation.

• In SRT or HRT mode the values from the most recent data PDU

are used for internal computation. Sending of

DAT_input_output is also allowed.

7 Same as 6, excluding SRT and HRT cases.

Additionally, sending of DAT_input_output is also allowed.

Table 64: Key for allowed PDUs per state

3.3.7 PDU Definitions

3.3.7.1 PDU STC_register

This PDU is used by a DCP master to take ownership of a given DCP slave.

The field slave_uuid follows the definition of section 3.3.3.22.

The fields major_version and minor_version follow the version descriptor numbering scheme

of section 3.1.2.

In the field receiver the master sets the slave’s slave id.

Distributed Co-Simulation Protocol Specification Version 1.0

 44 / 112

First Position [Byte] Last Position [Byte] Data type Field

0 0 uint8 type_id = 0x01

1 2 unit16 pdu_seq_id

3 3 uint8 receiver

4 4 uint8 state_id

5 20 byte[16] slave_uuid

21 21 uint8 op_mode

22 22 uint8 major_version

23 23 uint8 minor_version

Table 65: STC_register

3.3.7.2 PDU STC_deregister

With the PDU STC_deregister, the slave is released from the ownership of the master. It trig-

gers the transition to state ALIVE.

First Position [Byte] Last Position [Byte] Data type Field

0 0 uint8 type_id = 0x02

1 2 unit16 pdu_seq_id

3 3 uint8 receiver

4 4 uint8 state_id

Table 66: STC_deregister

3.3.7.3 PDU STC_prepare

This PDU is used to trigger the state transition to PREPARING.

First Position [Byte] Last Position [Byte] Data type Field

0 0 uint8 type_id = 0x03

1 2 unit16 pdu_seq_id

3 3 uint8 receiver

4 4 uint8 state_id

Table 67: STC_prepare

3.3.7.4 PDU STC_configure

This PDU is used to trigger the state transition to CONFIGURING.

First Position [Byte] Last Position [Byte] Data type Field

0 0 uint8 type_id = 0x04

1 2 unit16 pdu_seq_id

3 3 uint8 receiver

4 4 uint8 state_id

Table 68: STC_configure

3.3.7.5 PDU STC_initialize

This PDU is used to trigger the state transition to INITIALIZING.

First Position [Byte] Last Position [Byte] Data type Field

0 0 uint8 type_id = 0x05

1 2 unit16 pdu_seq_id

3 3 uint8 receiver

4 4 uint8 state_id

Table 69: STC_initialize

3.3.7.6 PDU STC_run

After receiving STC_run, the slave transitions immediately to state SYNCHRONIZING or RUNNING,

respectively.

The field time is used to schedule the start of a simulation run in HRT or SRT operating modes.

It refers to absolute time.

Distributed Co-Simulation Protocol Specification Version 1.0

 45 / 112

If time >= current absolute time, a DCP slave must wait until the point in time arrives.

If time is less than the current absolute time (time < current absolute time) the DCP slave shall

respond with RSP_nack, including error_code = INVALID_START_TIME.

If the value of time equals zero (“0”), simulation shall start immediately. In case of non-real

time operation mode (NRT), time must be ignored, considering that the simulation run is con-

trolled by STC_do_step.

CONFIGURED -> SYNCHRONIZING

When time is reached, the slave starts to exchange data and the simulation time starts to ad-

vance.

SYNCHRONIZING -> RUNNING

When time is reached, the actual simulation experiment must start.

First Position [Byte] Last Position [Byte] Data type Field

0 0 uint8 type_id = 0x06

1 2 unit16 pdu_seq_id

3 3 uint8 receiver

4 4 uint8 state_id

5 12 int64 time

Table 70: STC_run

3.3.7.7 PDU STC_do_step

This PDU triggers the transition to COMPUTING. It shall only be sent to DCP slaves in non-real-

time (NRT) operating mode.

First Position [Byte] Last Position [Byte] Data type Field

0 0 uint8 type_id = 0x07

1 2 unit16 pdu_seq_id

3 3 uint8 receiver

4 4 uint8 state_id

5 8 uint32 steps

Table 71: STC_do_step

3.3.7.8 PDU STC_send_outputs

This PDU triggers the transition to SENDING_I and SENDING_D and thus the transmission of calcu-

lated simulation outputs.

First Position [Byte] Last Position [Byte] Data type Field

0 0 uint8 type_id = 0x08

1 2 unit16 pdu_seq_id

3 3 uint8 receiver

4 4 uint8 state_id

Table 72: STC_send_outputs

3.3.7.9 PDU STC_stop

This PDU triggers the transition to state STOPPING.

First Position [Byte] Last Position [Byte] Data type Field

0 0 uint8 type_id = 0x09

1 2 unit16 pdu_seq_id

3 3 uint8 receiver

4 4 uint8 state_id

Table 73: STC_stop

3.3.7.10 PDU STC_reset

This PDU triggers the transition to state CONFIGURATION. All configuration settings received be-

fore by configuration request PDUs (CFG) are deleted.

Distributed Co-Simulation Protocol Specification Version 1.0

 46 / 112

First Position [Byte] Last Position [Byte] Data type Field

0 0 uint8 type_id = 0x0A

1 2 unit16 pdu_seq_id

3 3 uint8 receiver

4 4 uint8 state_id

Table 74: STC_reset

3.3.7.11 PDU INF_state

This PDU requests a DCP slave’s current state.

First Position [Byte] Last Position [Byte] Data type Field

0 0 uint8 type_id = 0x80

1 2 unit16 pdu_seq_id

3 3 uint8 receiver

Table 75: INF_state

3.3.7.12 PDU INF_error

This PDU requests a DCP slave’s reported error.

First Position [Byte] Last Position [Byte] Data type Field

0 0 uint8 type_id = 0x81

1 2 unit16 pdu_seq_id

3 3 uint8 receiver

Table 76: INF_error

3.3.7.13 PDU INF_log

This PDU requests the slave to send it’s logging entries of the category log_category. The
number of returned logging entries is limited to log_max_num.

First Position [Byte] Last Position [Byte] Data type Field

0 0 uint8 type_id = 0x82

1 2 unit16 pdu_seq_id

3 3 uint8 receiver

4 4 uint8 log_category

5 5 uint8 log_max_num

Table 77: INF_log

3.3.7.14 PDU CFG_time_res

This PDU requests a DCP slave to set its time resolution.

First Position [Byte] Last Position [Byte] Data type Field

0 0 uint8 type_id = 0x20

1 2 unit16 pdu_seq_id

3 3 uint8 receiver

4 7 uint32 numerator

8 11 uint32 denominator

Table 78: CFG_time_res

Distributed Co-Simulation Protocol Specification Version 1.0

 47 / 112

3.3.7.15 PDU CFG_steps

This PDU requests a DCP slave to set its communication step size.

The number of steps must be larger or equal than 1.

First Position [Byte] Last Position [Byte] Datatype Field Name

0 0 uint8 type_id = 0x21

1 2 unit16 pdu_seq_id

3 3 uint8 receiver

4 7 uint32 steps

8 9 uint16 data_id

Table 79: CFG_steps

3.3.7.16 PDU CFG_input

In order to set up slave-to-slave DAT_input_output PDU communication, the DCP master must

inform all DCP slaves that have inputs to be received in which format they may expect

DAT_input_output PDUs. For that purpose, CFG_input is used.

First Position [Byte] Last Position [Byte] Data type Field

0 0 uint8 type_id = 0x22

1 2 unit16 pdu_seq_id

3 3 uint8 receiver

4 5 uint16 data_id

6 7 uint16 pos

8 15 uint64 target_vr

16 16 uint8 source_data_type

Table 80: CFG_input

3.3.7.17 PDU CFG_output

In order to set up slave-to-slave DAT_input_output PDU communication, the master must in-

form all DCP slaves that have outputs to be sent to which input and at which DCP slave the value

must be sent. For that purpose, the PDU CFG_output is used.

First Position [Byte] Last Position [Byte] Data type Field

0 0 uint8 type_id = 0x23

1 2 unit16 pdu_seq_id

3 3 uint8 receiver

4 5 uint16 data_id

6 7 uint16 pos

8 15 uint64 source_vr

Table 81: CFG_output

3.3.7.18 PDU CFG_clear

The DCP slave must reset all configurations set earlier by configuration request PDUs.

Note: The operating mode and the DCP slave’s slave_id are not reset.

First Position [Byte] Last Position [Byte] Data type Field

0 0 uint8 type_id = 0x24

1 2 unit16 pdu_seq_id

3 4 uint8 receiver

Table 82: CFG_clear

3.3.7.19 PDU CFG_target_network_information

The PDU CFG_target_network_information is used to distribute network information. It is de-

fined by the following general structure. The complete structure depends on the used communi-

cation medium.

The character N denotes the total length of one specific CFG_target_network_information in

bytes. It depends on the used transport protocol.

Distributed Co-Simulation Protocol Specification Version 1.0

 48 / 112

First Position [Byte] Last Position [Byte] Data type Field

0 0 uint8 type_id = 0x25

1 2 unit16 pdu_seq_id

3 3 uint8 receiver

4 5 uint16 data_id

6 6 uint8 transport_protocol

7 N-1 See section 4 – transport protocol specific

Table 83: CFG_target_network_information

3.3.7.20 PDU CFG_source_network_information

The message CFG_source_network_information is used to distribute network information. It is

defined by the following general structure. The complete structure depends on the communica-

tion medium used.

The character N denotes the total length of one specific CFG_source_network_information in

bytes. It depends on the used transport protocol.

First Position [Byte] Last Position [Byte] Data type Field

0 0 uint8 type_id = 0x26

1 2 unit16 pdu_seq_id

3 3 uint8 receiver

4 5 uint16 data_id

6 6 uint8 transport_protocol

7 N-1 See section 4 – transport protocol specific

Table 84: CFG_source_network_information

3.3.7.21 PDU CFG_parameter

The field name payload refers to the configuration information transmitted by that PDU. The

character N denotes the total length of one specific PDU given in bytes. It depends on the used

configuration.

First Position [Byte] Last Position [Byte] Data type Field

0 0 uint8 type_id = 0x27

1 2 unit16 pdu_seq_id

3 3 uint8 receiver

4 11 uint64 parameter_vr

12 12 uint8 source_data_type

13 N-1 byte[N-13] payload

Table 85: CFG_parameter

3.3.7.22 PDU CFG_tunable_parameter

This PDU is used to inform the DCP slave about the parameter format to expect.

First Position [Byte] Last Position [Byte] Data type Field

0 0 uint8 type_id = 0x28

1 2 unit16 pdu_seq_id

3 3 uint8 receiver

4 5 uint16 param_id

6 7 uint16 pos

8 15 uint64 parameter_vr

16 16 uint8 source_data_type

Table 86: CFG_tunable_parameter

Distributed Co-Simulation Protocol Specification Version 1.0

 49 / 112

3.3.7.23 PDU CFG_param_network_information

The message CFG_param_network_information is used to distribute network information. It is

defined by the following general structure, the complete structure depends on the used transport

protocol.

The character N denotes the total length of one specific CFG_param_network_information in

bytes, it depends on the used transport protocol.

First Position [Byte] Last Position [Byte] Data type Field

0 0 uint8 type_id = 0x29

1 2 unit16 pdu_seq_id

3 3 uint8 receiver

4 5 uint16 param_id

6 6 uint8 transport_protocol

7 N-1 See section 4 – transport protocol specific

Table 87: CFG_param_network_information

3.3.7.24 PDU CFG_logging

This PDU is used to set up the DCP logging mechanisms. See section 3.1.23 for details.

First Position [Byte] Last Position [Byte] Data type Field

0 0 uint8 type_id = 0x2A

1 2 unit16 pdu_seq_id

3 3 uint8 receiver

4 4 uint8 log_category

5 5 uint8 log_level

6 6 uint8 log_mode

Table 88: CFG_logging

3.3.7.25 PDU CFG_scope

This PDU is used to set the scope of the configurations of a Data PDU identified by data_id. See

section 3.3.3.21 and section 3.4.6 for details.

First Position [Byte] Last Position [Byte] Data type Field

0 0 uint8 type_id = 0x2B

1 2 unit16 pdu_seq_id

3 3 uint8 receiver

4 5 uint16 data_id

6 6 uint8 scope

Table 89: CFG_scope

3.3.7.26 PDU RSP_ack

This PDU is used for general acknowledgment of any requests.

First Position [Byte] Last Position [Byte] Data type Field

0 0 uint8 type_id = 0xB0

1 2 uint16 resp_seq_id

3 3 unit8 sender

Table 90: RSP_ack

3.3.7.27 PDU RSP_nack

RSP_nack shall be sent whenever a received Control PDU was not understood correctly, cannot

be executed at the time, or contains an unexpected PDU sequence identifier (see section 3.4.1).

Furthermore, it contains an error_code field indicating the occurred error.

Distributed Co-Simulation Protocol Specification Version 1.0

 50 / 112

First Position [Byte] Last Position [Byte] Data type Field

0 0 uint8 type_id = 0xB1

1 2 uint16 resp_seq_id

3 3 unit8 sender

4 5 uint16 exp_seq_id

6 7 uint16 error_code

Table 91: RSP_nack

3.3.7.28 PDU RSP_state_ack

This PDU is used by a DCP master to report the current state in the field state_id. The sender

field holds the slave id of the slave. In case the slave is in state ALIVE i.e. it has not been reg-

istered and thus has not been given a slave id, the slave uses the DCP slave id from the re-

ceiver field of PDU INF_state to answer with the sender field of PDU RSP_state_ack.

First Position [Byte] Last Position [Byte] Data type Field

0 0 uint8 type_id = 0xB2

1 2 uint16 resp_seq_id

3 3 unit8 sender

4 4 uint8 state_id

Table 92: RSP_state_ack

3.3.7.29 PDU RSP_error_ack

This PDU is used by a DCP slave to report the current error.

First Position [Byte] Last Position [Byte] Data type Field

0 0 uint8 type_id = 0xB3

1 2 uint16 resp_seq_id

3 3 unit8 sender

4 5 uint16 error_code

Table 93: RSP_error_ack

3.3.7.30 PDU RSP_log_ack

The character N denotes the total length of one specific PDU given in bytes. It depends on the

used configuration.

First Position [Byte] Last Position [Byte] Data type Field

0 0 uint8 type_id = 0xB4

1 2 uint16 resp_seq_id

3 3 unit8 sender

4 N-1 byte[N-4] log_entries

Table 94: RSP_log_ack

The log_entries field of RSP_log_ack contains an array of log entries, where one single log

entry has the following structure. The character M denotes the total length of one single log en-

try given in bytes. It depends on the used configuration.

First Position [Byte] Last Position [Byte] Data type Field

0 7 int64 time

8 8 unit8 log_template_id

9 M-1 byte[M-9] log_arg_val

Table 95: Single log entry

The log_arg_val field of a single log entry contains an array of variables.

Distributed Co-Simulation Protocol Specification Version 1.0

 51 / 112

3.3.7.31 PDU NTF_state_changed

This PDU indicates a successful state transition.

First Position [Byte] Last Position [Byte] Data type Field

0 0 uint8 type_id = 0xE0

1 1 unit8 sender

2 2 uint8 state_id

Table 96: NTF_state_changed

3.3.7.32 PDU NTF_log

This PDU is used to send a single log entry. The payload field of NTF_log contains an array of

argument values for the given log_template_id. The character “N” denotes the total length of

one specific PDU given in bytes. It depends on the used configuration.

First Position [Byte] Last Position [Byte] Data type Field

0 0 uint8 type_id = 0xE1

1 1 unit8 sender

2 9 int64 time

10 10 uint8 log_template_id

11 N-1 byte[N-11] log_arg_val

Table 97: NTF_log

3.3.7.33 PDU DAT_input_output

The field name payload refers to the payload of that PDU. The character “N” denotes the total

length of one specific PDU given in bytes. It depends on the used configuration.

First Position [Byte] Last Position [Byte] Data type Field

0 0 uint8 type_id = 0xF0

1 2 unit16 pdu_seq_id

3 4 uint16 data_id

5 N-1 byte[N-5] payload

Table 98: DAT_input_output

3.3.7.34 PDU DAT_parameter

The field name payload refers to the payload of that PDU. The character “N” denotes the total

length of one specific PDU given in bytes. It depends on the used configuration.

First Position [Byte] Last Position [Byte] Data type Field

0 0 uint8 type_id = 0xF1

1 2 unit16 pdu_seq_id

3 4 uint16 param_id

5 N-1 Byte[N-5] payload

Table 99: DAT_parameter

Distributed Co-Simulation Protocol Specification Version 1.0

 52 / 112

3.4 Protocol

In this section the valid sequence of exchanged PDUs is defined. The following tables contain a

sequence number. In this sequence number, digits define a mandatory sequence of actions,

whereas letters define exclusive options.

3.4.1 Sequence Identifier

The sequence identifier is defined as a running counter, identifying PDUs within a certain amount

of time. The master must maintain a pdu_seq_id for each slave he is connected to. The master

also defines the initial value of the pdu_seq_id by sending STC_register.

Note: The slave can use the pdu_seq_id after receiving STC_register.

Note: It is not allowed to use one pdu_seq_id multiple times in a row, except at nat-

ural data type overflows. The pdu_seq_id must always be incremented by one.

All PDUs of the Request PDU family contain a PDU sequence identifier field. All PDUs of the Re-

sponse PDU family contain a PDU response sequence identifier field (resp_seq_id) which con-

tains the value of the pdu_seq_id of the corresponding Request PDU.

3.4.1.1 Control PDU Sequence ID

To check the sequence identifier of a received Control PDU, the following criterion applies:

pdu_seq_idlast valid + 1 == pdu_seq_idcurrent

The field exp_seq_id in RSP_nack shall always contain the last valid received pdu_seq_id + 1.

If the PDU sequence ID check is violated, the error code INVALID_SEQUENCE_ID applies.

3.4.1.2 Data PDU Sequence ID

The attribute maxConsecMissedPdu defines the number of consecutively missed PDUs a DCP

slave can tolerate. A violation of this number will make the DCP slave proceed to the Error su-

perstate. If no value is defined (the field does not exist), the DCP slave does not check on the

PDU sequence ID and therefore never proceeds to the Error superstate because of missed PDUs.

Note: It is highly recommended to use reliable transport protocols for parameters and

discrete outputs. See also section 10-F.

3.4.2 Configuration Request Pattern

The DCP master may request from a DCP slave that it applies certain configuration settings by

sending configuration request PDUs (PDU family CFG).

Sequence Number Action

1 The DCP master requests a configuration setting by sending a configura-

tion request PDU (CFG) to the DCP slave.

2a The slave responds to the DCP master by sending RSP_nack. In that case,

the DCP slave did not receive the request properly or will not be able to

fulfill the request properly.

2b The DCP slave responds by sending RSP_ack. In that case, the DCP slave

will apply the desired configuration setting immediately.

2c The DCP slave responds with RSP_nack, whenever an attempt is made to

modify a configuration setting fixed in the DCP slave description. If the

request is consistent with the current configuration setting, RSP_ack shall

be sent.

Table 100: Configuration request pattern

3.4.3 State Transition Pattern

In order to operate the DCP state machine, the following state transition pattern is introduced. It

is valid for the entire state machine, unless noted otherwise.

Distributed Co-Simulation Protocol Specification Version 1.0

 53 / 112

Sequence Number Action

1 The DCP master requests a state transition by sending a state change

request PDU to the DCP slave.

2a The DCP slave responds to the DCP master by sending PDU RSP_nack. In

that case, the DCP slave did not receive the request properly or will not

be able to fulfill the request properly (see Figure 2).

2b The DCP slave responds by sending PDU RSP_ack. In that case, the DCP

slave will start the transitioning process immediately.

3 If the transition is successfully finished, the DCP slave informs the DCP

master by sending a PDU NTF_state_changed (see Figure 3).

Table 101: State transition pattern procedure

Figure 2: State transition pattern (NAck) Figure 3: State transition pattern (Ack)

3.4.4 State Reporting

A DCP slave must communicate its state to its master as soon as it has changed. It does so by

sending the PDU NTF_state_changed whenever a DCP slave’s state change is finished.

In addition to that, the PDU INF_state can be sent at any time by the DCP master to query a

DCP slave’s state. A DCP slave shall respond with PDU RSP_state_ack.

Figure 4: Positive state request

Note: The master is free to choose the DCP slave id before registering DCP slaves, to

have a unique identifier for a specific DCP slave at the beginning. The slave must an-

swer using exactly this DCP slave id.

Note: A DCP slave may be identified using the pdu_seq_id only, with the risk of hav-

Distributed Co-Simulation Protocol Specification Version 1.0

 54 / 112

ing collisions, depending on the underlying communication medium. Using the DCP

slave id as described here, it is possible to uniquely identify a DCP slave.

3.4.5 Data Exchange

3.4.5.1 Inputs and Outputs

Outputs are communicated to Inputs via the payload field of PDU DAT_input_output.

The values of several outputs of one slave can be grouped in the payload field of one

DAT_input_output PDU. Such a group is identified by a unique data_id. A payload field must

group only values of outputs with the same configuration, i.e. sender, receiver, network configu-

ration, scope and communication step size. The format of the payload field is defined in CONFIG-
URATION state using the Configuration PDUs CFG_output and CFG_input: the PDU CFG_output
tells the sending slave the position of the value of an output in the payload field of a

DAT_input_output.

The PDU CFG_input tells the receiving slave the position and the data type of the value in the

payload field of a DAT_input_output for its input.

The communication protocol relevant information for a DAT_input_output is set in CONFIGURA-
TION state by the PDUs CFG_set_source_network_information and
CFG_set_target_network_information. For RT mode, the communication step size is set by

CFG_steps.

An example of the intended sequence for the rollout of the configuration of data exchange via

data objects using native DCP (UDP over IPv4) is given in the Appendix, section D.

3.4.5.2 Parameters

Parameters are set via PDU CFG_parameter.

Parameters with variability=”tunable” can additionally be set via PDU DAT_parameter. In

this case the values of several parameters can be grouped in the payload field of one

DAT_parameter PDU. Such a group is identified by a unique param_id. A payload field must

group only values of parameters for the same configuration, i.e. receiver and network configura-

tion. The format of the payload field is defined in CONFIGURATION state using Configuration PDUs

CFG_tunable_parameter. This PDU tells the slave the position and type of the value of the pa-

rameter in the field payload of a DAT_parameter PDU.

The communication protocol relevant information for a DAT_parameter is set in CONFIGURATION

state by the PDUs CFG_param_network_information.

3.4.6 Scope

Algorithms for computation of a consistent initial state (see section 3.2.3.3) may require ex-

change of inputs and outputs via the master. In superstates Run and NonRealTime slave-to-

slave data exchange is advantageous, to reduce latencies and bandwidth compared to slave-

master-slave communication. Therefore, a mechanism is defined which supports both. The PDUs

CFG_scope contains the field scope. It defines in which states the respective configuration is

active: Either in superstates Run and NonRealTime, or in Initialization, or both. Table 102

defines the enumeration of the field scope.

Superstates scopehex

Initialization/Run/NonRealTime 0x0

Initialization 0x1

Run/NonRealTime 0x2

Table 102: Enumeration of scope

3.4.7 PDU Validity

If a PDU is received by a DCP slave, it shall be checked for validity. Table 104 contains a list of

all currently defined error codes which are applicable to the DCP. Table 105 contains a list of all

currently defined validity checks, applicable to Control and Data PDUs. Table 106 defines the

permissible actions to be taken depending on the result of PDU checking. Table 107 defines the

order of error checking for Control PDUs. Table 109 defines the order of error checking for Data

PDUs.

Distributed Co-Simulation Protocol Specification Version 1.0

 55 / 112

As the PDUs from the family Notification (NTF) are not intended to be received by a DCP slave,

they may be dropped silently.

3.4.7.1 Error Code Ranges

The following ranges for error codes are defined.

Range Group

0x00 NONE

0x1001-0x1FFF PROTOCOL_ERROR_*

0x2001-0x2FFF INVALID_*

0x3001-0x3FFF INCOMPLETE_*

0x4001-0x4FFF NOT_SUPPORTED_*

0x5001-0x5FFF [Transport protocol specific error codes]

0x6001-0xFFFF [Reserved]

Table 103: Error code ranges

3.4.7.2 List of Error Codes

The following list of error codes applies to the field error_code of RSP_nack and RSP_error_ack.

e
r
r
o
r
_
c
o
d
e

h
e
x

Mnemonic Description

0x0000 NONE Indicates that no error is currently present.

0x1001 PROTOCOL_ERROR_GENERIC Indicates that an error has occurred which is

not specified in this document.

0x1002 PROTOCOL_ERROR_HEARTBEAT_MISSED Indicates that the DCP slave did not receive a

PDU INF_state within the maximum periodic

interval ti_max defined in the DCP slave de-

scription.

0x1003 PROTOCOL_ERROR_
PDU_NOT_ALLOWED_IN_THIS_STATE

Indicates that a received PDU is not allowed

in the current state. See section 3.3.6 for de-

tails.

0x1004 PROTOCOL_ERROR_PROPERTY_VIOLATED Indicates that one of the following properties

specified in the DCP slave description has

been violated:

min, max, preEdge, postEdge, gradient,

maxConsecMissedPdus.

Note: The detection and notification of a vio-

lation of these properties is optional.

0x1005 PROTOCOL_ERROR_
STATE_TRANSITION_IN_PROGRESS

Indicates that a received state change re-

quest PDU has already been acknowledged,

but the current state still differs from the re-

quested state.

0x2001 INVALID_LENGTH Indicates that the received PDU has a valid

type_id, but its length does not match.

0x2002 INVALID_LOG_CATEGORY log_category is not log category of the slave

0x2003 INVALID_LOG_LEVEL log_level is not a valid log level according to

section 3.1.23.1

0x2004 INVALID_LOG_MODE log_mode is not valid log mode according to

section 3.1.23

0x2005 INVALID_MAJOR_VERSION major_version as set by the master is not

allowed according to the major version of the

Distributed Co-Simulation Protocol Specification Version 1.0

 56 / 112

DCP specification defined in the DCP slave

description.

0x2006 INVALID_MINOR_VERSION minor_version as set by the master is not

allowed according to the minor version of the

DCP specification defined in the DCP slave

description.

0x2007 INVALID_NETWORK_INFORMATION Indicates that the network information pro-

vided through a configuration request PDU is

not valid.

0x2008 INVALID_OP_MODE Indicates that the operating mode requested

through STC_register is not supported by

this DCP slave.

0x2009 INVALID_PAYLOAD Indicates that the length of a string or bi-
nary data type is larger than the defined

maxSize.

0x200A INVALID_SCOPE scope is invalid according to section 3.4.6.

0x200B INVALID_SOURCE_DATA_TYPE source_data_type is not compatible with the

inputs data type. For a list of data types see

section 3.1.10, and for casting rules see sec-

tion 3.1.20.

0x200C INVALID_START_TIME

Indicates that the start time provided in

STC_run is invalid, e.g. in the past.

0x200D INVALID_STATE_ID state_id is not equal to the slave’s state.

0x200E INVALID_STEPS Indicates that the number of steps in

CFG_steps or STC_do_step is not supported.

0x200F INVALID_TIME_RESOLUTION Indicates that the time resolution expressed

by numerator and denominator is not valid.

0x2010 INVALID_TRANSPORT_PROTOCOL The given transport_protocol is not sup-

ported by the slave

0x2011 INVALID_UUID slave_uuid is not equal to slave’s uuid.

0x2012 INVALID_VALUE_REFERENCE Indicates that the value reference in

CFG_input, CFG_output, CFG_parameter, or

CFG_tunable_parameter is not available

within that DCP slave.

0x2013 INVALID_SEQUENCE_ID Violated PDU sequence ID check. See sec-

tion 3.4.1.

0x3001 INCOMPLETE_CONFIG_GAP_INPUT_POS There are gaps in the configured PDU Data

payload field.

Note: No gap means if pos n is not

the last pos, there exists a pos

n+1.

0x3002 INCOMPLETE_CONFIG_GAP_OUTPUT_POS There are gaps in the pos of the received

CFG_output PDUs.

0x3003 INCOMPLETE_CONFIG_GAP_TUNABLE_POS There are gaps in the pos of the received

CFG_tunable_parameter PDUs.

0x3004 INCOMPLETE_CONFIG_NW_INFO_INPUT For the PDU Data payload field identified by

data_id no or no valid

CFG_source_network_information has been

received.

0x3005 INCOMPLETE_CONFIG_NW_INFO_OUTPUT For the PDU Data payload field identified by

data_id no or no valid

CFG_target_network_information has been

received.

0x3006 INCOMPLETE_CONFIG_NW_INFO_TUNABLE Not for each param_id which occurs in the

PDUs CFG_tunable_parameter a valid

CFG_param_network_information with the

Distributed Co-Simulation Protocol Specification Version 1.0

 57 / 112

same param_id is received.

0x3007 INCOMPLETE_CONFIG_SCOPE At least one data_id is missing the setting of

the scope.

0x3008 INCOMPLETE_CONFIG_STEPS For every data_id which occurs in a

CFG_output at least one valid CFG_steps with

the same data_id must have been received.

0x3009 INCOMPLETE_CONFIG_TIME_RESOLUTION No time resolution is specified. Neither

through the DCP slave description, nor

through CFG_time_res.

0x300A INCOMPLETE_CONFIGURATION Indicates that a DCP slave cannot leave CON-
FIGURATION state due to missing configura-

tion information.

0x4001 NOT_SUPPORTED_LOG_ON_NOTIFICATION log_mode logOnNotification is not support-

ed by the slave, i.e. in DCP slave description

canProvideLogOnNotification = false

0x4002 NOT_SUPPORTED_LOG_ON_REQUEST log_mode logOnRequest is not supported by

the slave i.e. in DCP slave description

canProvideLogOnRequest = false

0x4003 NOT_SUPPORTED_VARIABLE_STEPS Steps differ from previous ones (if the slave

does not support variable step sizes).

0x4004 NOT_SUPPORTED_TRANSPORT_PROTOCOL Indicates that the transport protocol number

provided through a configuration request PDU

is not supported.

0x4005 NOT_SUPPORTED_PDU Indicates that this type of PDU (identified

through field type_id) is defined within this

specification but is not supported by this DCP

slave.

Note: This affects the current op-

erating mode as well as DCP slave

capabilities.

0x4006 NOT_SUPPORTED_PDU_SIZE A data PDU was configured such that it ex-

ceeds the maximum allowed PDU size speci-

fied in maxPduSize in the DCP slave descrip-

tion.

Table 104: List of error codes

Distributed Co-Simulation Protocol Specification Version 1.0

 58 / 112

Check Details

Type identifier The type_id field of the received PDU is checked. All valid type identifiers

are specified in section 3.3.

Note: This affects type_identifiers which are not specified, as

well as PDUs which are not intended to be processed by this

DCP slave, e.g. RSP_ack.

Length The PDU length in bytes is checked.

Note: A plausibility check would include checking for PDU

length smaller than 4 Bytes, resulting in an immediate drop.

Detailed length checks shall be performed as defined in Table

107, Table 108, and Table 109.

Support The received PDU is supported by the DCP slave, e.g. capability flag

canSupportReset is set.

Receiver The receiver field of the received PDU is evaluated against the assigned

DCP slave id.

In state ALIVE, check if receiver is greater than zero.

Note: The DCP slave id zero is reserved for the master. There-

fore no slave can be a valid receiver of a PDU which is deter-

mined for receiver zero.

Sequence id The pdu_seq_id field of the received PDU is evaluated and checked for

integrity. The maxConsecMissedPdus attribute from DCP slave description

may influence the exact behavior.

data_id/param_id The data_id or param_id field is validated.

State The type_id field of the received PDU is validated against the current DCP

slave state according to Table 63.

Semantics All fields of the received PDU, that are specified in section 3.3 and are not

explicitly covered in this section, shall be checked for validity and integrity.

Table 105: Applicable PDU validity checks

Activity Details

Drop PDU The received PDU shall be dropped silently, without any further actions.

Process PDU The received PDU shall be processed further according to this specification

document.

Handle error The occurred error shall be communicated to the DCP master. Possible ac-

tions include transition to an Error state, and responding an error_code by

using RSP_nack or RSP_error_ack.

A list of corresponding error_codes can be found in section 3.4.7.3.

Table 106: Applicable actions related to PDU validity checks

Distributed Co-Simulation Protocol Specification Version 1.0

 59 / 112

3.4.7.3 Order of Error Checking

The following tables (Table 107, Table 108, Table 109) define the order of the checks for PDUs a

DCP slave must perform. If multiple checks fail, the action from the failed check with the lowest

order value must be reported first. The error codes apply to the fields error_code of RSP_nack

and RSP_error_ack.

Note: This does not necessarily apply to the order of internally performed checks.

This order indicates the sequence of error reporting. This is independent of the se-

quence of actual performed checks.

Order Check Action/Error code

1 Type identifier Drop

Receiver

2 Sequence ID INVALID_SEQUENCE_ID

3 Support NOT_SUPPORTED_PDU

4 Length INVALID_LENGTH

5 State PDU_NOT_ALLOWED_IN_THIS_STATE

6 Semantics See section 3.4.7.4

Table 107: Order of error checking for request PDUs

Order Check Action/Error Code

1 Type identifier Drop

Table 108: Order of error checking for response PDUs

Order Check Action

1 Type identifier Drop

data_id/param_id

Sequence ID

Length

State

Table 109: Order of error checking for data PDUs

3.4.7.4 Order of Error Codes

Order Error Code

1 INVALID_STATE_ID

2 INVALID_UUID

3 INVALID_OP_MODE

4 INVALID_MAJOR_VERSION

5 INVALID_MINOR_VERSION

Table 110: Error code order for STC_register

Order Error Code

1 INVALID_STATE_ID

Table 111: Error code order for STC_deregister

Distributed Co-Simulation Protocol Specification Version 1.0

 60 / 112

Order Error Code if condition fails

1 INVALID_STATE

2 INCOMPLETE_CONFIG_GAP_INPUT_POS

3 INCOMPLETE_CONFIG_GAP_OUTPUT_POS

4 INCOMPLETE_CONFIG_GAP_TUNABLE_POS

5 INCOMPLETE_CONFIG_NW_INFO_INPUT

6 INCOMPLETE_CONFIG_NW_INFO_OUTPUT

7 INCOMPLETE_CONFIG_NW_INFO_TUNABLE

8 INCOMPLETE_CONFIG_STEPS

9 INCOMPLETE_CONFIG_TIME_RESOLUTION

10 INCOMPLETE_CONFIG_SCOPE

11 NOT_SUPPORTED_PDU_SIZE

Table 112: Error code order for STC_prepare

Order Error Code if condition fails

1 INVALID_STATE_ID

Table 113: Error code order for STC_configure

Order Error Code if condition fails

1 INVALID_STATE_ID

Table 114: Error code order for STC_initialize

Order Error Code if condition fails

1 INVALID_STATE_ID

1 INVALID_START_TIME

Table 115: Error code order for STC_run

Order Error Code if condition fails

1 INVALID_STATE_ID

2 INVALID_STEPS

3 NOT_SUPPORTED_VARIABLE_STEPS

Table 116: Error code order for STC_do_step

Order Error Code if condition fails

1 INVALID_STATE_ID

Table 117: Error code order for STC_send_outputs

Order Error Code if condition fails

1 INVALID_STATE_ID

Table 118: Error code order for STC_stop

Order Error Code if condition fails

1 INVALID_STATE_ID

Table 119: Error code order for STC_reset

Note: A received STC_reset PDU is caught by PDU support check if canHandleReset =

false (see Table 107)

Distributed Co-Simulation Protocol Specification Version 1.0

 61 / 112

Order Error Code if condition fails

1 INVALID_LOG_CATEGORY

Table 120: Error code order for INF_log

Note: A received configuration PDU is caught by Check PDU support if canAcceptCon-

figPdus = false.

Order Error Code if condition fails

1 INVALID_TIME_RESOLUTION

Table 121: Error code order for CFG_time_res

Order Error Code if condition fails

1 INVALID_STEPS

Table 122: Error code order for CFG_steps

Order Error Code if condition fails

1 INVALID_VALUE_REFERENCE

2 INVALID_SOURCE_DATA_TYPE

Table 123: Error code order for CFG_input

Order Error Code if condition fails

1 INVALID_VALUE_REFERENCE

2 INVALID_STEPS

Table 124: Error code order for CFG_output

Order Error Code if condition fails

1 INVALID_TRANSPORT_PROTOCOL

2 INVALID_NETWORK_INFORMATION

Table 125: Error code order for CFG_target_network_information

Order Error Code if condition fails

1 INVALID_TRANSPORT_PROTOCOL

2 INVALID_NETWORK_INFORMATION

Table 126: PDU Error code order CFG_source_network_information

Order Error Code if condition fails

1 INVALID_VALUE_REFERENCE

2 INVALID_SOURCE_DATA_TYPE

3 INVALID_PAYLOAD

Table 127: Error code order for CFG_parameter

Order Error Code if condition fails

1 INVALID_VALUE_REFERENCE

2 INVALID_SOURCE_DATA_TYPE

Table 128: PDU Error code order CFG_tunable_parameter

Distributed Co-Simulation Protocol Specification Version 1.0

 62 / 112

Order Error Code if condition fails

1 INVALID_TRANSPORT_PROTOCOL

2 (Driver specific error handling.)

Table 129: Error code order for CFG_param_network_information

Note: A received CFG_logging is caught by PDU support check if canProvideLogOn-
Request = false and canProvideLogOnNotification = false (see Table 107).

Order Error Code if condition fails

1 NOT_SUPPORTED_LOG_ON_REQUEST

2 NOT_SUPPORTED_LOG_ON_NOTIFICATION

3 INVALID_LOG_CATEGORY

4 INVALID_LOG_LEVEL

5 INVALID_LOG_MODE

Table 130: Error code order for CFG_logging

Order Error Code if condition fails

1 INVALID_SCOPE

Table 131: Error code order for CFG_scope

3.4.8 Error Reporting

Whenever a DCP slave is in ERRORHANDLING or ERRORRESOLVED states, the DCP master may send

INF_error to this DCP slave, to find out about the reason.

Sequence Number Action

1 The DCP master sends INF_error to the DCP slave.

2a The DCP slave responds by sending RSP_error_ack, which

contains an error code.

2b The DCP slave responds by sending RSP_nack, if he is cur-

rently not in the Error superstate.

Table 132: Error reporting procedure

3.4.9 Heartbeat

The heartbeat functionality is optional. Its availability is indicated by capability flag canMoni-
torHeartbeat, see section 5.12.

A slave should be able to detect that its master is still active. Therefore, the master shall send a

periodic PDU INF_state at a pre-defined interval ti to each of the connected slaves. This interval

is specified by the master. This enables two monitoring functions, defined as follows.

3.4.9.1 Slave Monitoring

The master receives a PDU RSP_state_ack from each slave and determines the response time.

If the response time tr exceeds a given time interval tr_max, the master should take appropriate

action.

3.4.9.2 Master Monitoring

Each slave must respond with a PDU RSP_state_ack immediately. A timeout defined in the DCP

slave description determines the maximum waiting time ti_max between two PDUs INF_state. If

the timeout expires, the slave shall go to state ERRORHANDLING and subsequently to state ER-
RORRESOLVED.

Distributed Co-Simulation Protocol Specification Version 1.0

 63 / 112

Figure 5: Heartbeat functionality

3.4.10 Error Handling

The DCP represents a framework to handle faults and errors to avoid failures of simulation sce-

narios, when running in SRT or HRT operation mode. Goal is to protect physical equipment (con-

nected real-time systems) as well as human operators from any harm that may be caused dur-

ing normal operation. The error handling procedures described here are in-line with ISO 26262

[6].

3.4.10.1 Unavailable communication medium

This description assumes that the used communication medium has become unavailable unex-

pectedly. The DCP slave may use mechanisms to detect these network problems, e.g. heartbeat.

In case a DCP slave is unable to send or receive PDUs, it transitions to ERRORHANDLING state. In

ERRORHANDLING the DCP slave shall e.g. close open connections, or perform the stopping routine.

If these procedures are finished, the DCP slave proceeds to ERRORRESOLVED.

If the communication medium becomes available again, it may react to e.g. an STC_reset. Oth-

erwise, operator intervention is required and the DCP slave must be restarted by other means.

3.4.10.2 Available communication medium

In the following the procedure of error handling is described under the assumption that it is still

possible to exchange PDUs.

Sequence Number Action

1 A fault (faulty behavior or condition in model or RT system) occurs within

a DCP slave (time tf). After the DCP slave detected this fault (time tfd) it

transitions self-reliantly to the Error superstate.

Note: The transition to ERRORHANDLING is not requested from

the master.

2 The DCP slave transitions to the ERRORHANDLING state immediately.

3 Within the ERRORHANDLING state, the DCP slave tries to send an

NTF_state_changed to the master. Then it starts suitable error handling

routines and tries to resolve the error.

Distributed Co-Simulation Protocol Specification Version 1.0

 64 / 112

Note: Appropriate measures of error resolving are shutdown of

subsystems, potential energy dissipation in connected RT sys-

tems, etc. This may take some time.

4a If successful, the DCP slave transitions to ERRORRESOLVED state immedi-

ately.

Note: No request to do so from master.

The DCP slave either sends a PDU NTF_state_changed to its master, re-

porting that the state transition is finished, or reports the state change to

the master on request.

Note: As defined in communication pattern.

4b If not successful, the system experiences an unrecoverable error. The

transition to state ERRORRESOLVED is not performed. Signal SIG_exit to

shut down in terms of an error handling procedure may be called.

5 In state ERRORRESOLVED, the DCP slave receives a PDU STC_reset

(time tr). It acknowledges it by sending a PDU RSP_ack to the DCP mas-

ter.

6 The transition to state CONFIGURATION, of superstate Normal operation

is performed. Either a PDU NTF_state_changed is sent to the master or

the state change is reported to the master on request.

Table 133: Error handling procedure for available communication medium

Figure 6: Procedure for error handling

3.4.10.3 Master Unavailability

If the master becomes unavailable its slaves may detect this (e.g. heartbeat) and proceed to the

error superstate, as described in section 3.4.10.2.

The master needs to ensure that the previously used scenario configuration can be reproduced,

including the DCP slave ID. This may be ensured by e.g. assignment of DCP slave IDs based on

sorted DCP slave UUIDs.

3.4.11 Unintended Behaviour

If a DCP slave receives a valid, previously received PDU but with a different pdu_seq_id number,

it shall acknowledge and process it as specified.

Distributed Co-Simulation Protocol Specification Version 1.0

 65 / 112

4 Transport Protocols

4.1 General

This section specifies the underlying transport protocols for DCP. Furthermore, this section as-

sumes the default DCP slave integration as given in Figure 34. Therefore, the DCP integrator

must know transport protocol specific information to connect the provided DCP slaves to a com-

munication medium. For this step, the DCP slave description file may be helpful.

4.2 Internet Protocol (IPv4) Based Transport Protocols

4.2.1 General

A DCP slave using IPv4-based transport protocols is accessible through an IP address and a port

number. This information is defined within the DCP slave description. For communication with a

DCP master, the DCP slave replies to the IP address and port where the initial STC_register is

coming from.

Note: A DCP master could be implemented as a IPv4-based client, whereas a DCP

slave could be implemented as a IPv4-based server.

As soon as STC_register is received and positively acknowledged (RSP_ack sent by DCP slave

and received by DCP master) the IP address and port for communication with the master are

fixed for this simulation run.

The port information at the slave side is cleared, as soon as STC_deregister is received.

Note: The DCP slave sender port may differ from the DCP slave receiving port.

4.2.1.1 Transport Protocol Specific Fields

The field port specifies an IPv4 port number.

The field ip_address specifies an internet protocol address.

4.2.1.2 Network Information

The master distributes the communication information relevant for data exchange using the fol-

lowing two PDUs: CFG_target_network_information is sent to the sending DCP slave. It con-

tains IP address and port number of the receiving DCP slave.

Implementation hint: If multiple network information with the same data_id is re-

ceived by a DCP slave, the DAT_input_output PDU is to be sent to all specified tar-

gets within the CFG_target_network_information.

CFG_source_network_information is sent to the receiving DCP slave. It contains a port num-

ber. The receiving DCP slave waits for incoming data on this port number.

Implementation hint: The sending port may be chosen randomly by the IP stack im-

plementation. It is never checked in any way on the receiver side.

The following three tables complete the PDU descriptions of sections 3.3.7.19, 3.3.7.20, and

3.3.7.23, respectively, for IPv4-based transport protocols.

The IPv4-based transport protocol specific part of CFG_target_network_information is defined

by the following structure:

First Position [Byte] Last Position [Byte] Data type Field

6 6 uint8 transport_protocol

7 8 uint16 port

9 12 uint32 ip_address

Table 134: CFG_target_network_information

The IPv4-based transport protocol specific part of the corresponding

CFG_param_network_information is defined by the following structure:

Distributed Co-Simulation Protocol Specification Version 1.0

 66 / 112

First Position [Byte] Last Position [Byte] Data type Field

6 6 uint8 transport_protocol

7 8 uint16 port

9 12 uint32 ip_address

Table 135: CFG_param_network_information

The IPv4-based transport protocol specific part of CFG_source_network_information is defined

by the following structure:

First Position [Byte] Last Position [Byte] Data type Field

6 6 uint8 transport_protocol

7 8 uint16 port

9 12 Uint32 ip_address

Table 136: CFG_source_network_information

4.2.1.3 Port information

If a port is specified inside the Control element (see section 5.11.2), Control PDUs may only be

received over this port.

Note: If no such port is specified, the integrator must obtain and set this information

in another way, which is not specified in this document. The DCP slave provider might

be consulted for clarification.

If a port or port range is specified inside the DAT_input_output (see section 5.11.2) element,

PDUs DAT_input_output may only be received over these ports.

Note: If no port or port range is specified inside the DAT_input_output element, the

integrator must obtain and set this information in another way, which is not specified

in this document. The DCP slave provider might be consulted for clarification.

If a port or port range is specified inside the DAT_parameter element, PDUs DAT_parameter may

only be received over these ports.

Note: If no port or port range is specified inside the DAT_parameter element, the in-

tegrator must obtain and set this information in another way, which is not specified in

this document. The DCP slave provider might be consulted for clarification.

Some port numbers might already be used or reserved for dedicated services.

Note: Implementation hint: If the master is free to choose a IPv4 port, he should use

the free user ports specified by IANA organization. Otherwise it is possible that the

chosen port collides with one of the ports reserved by IANA.

https://www.iana.org/assignments/service-names-port-numbers/service-names-port-

numbers.xhtml

4.2.1.4 Host information

If a host is specified inside the Control element (see section 5.11.2) Control PDUs may only be

received on this host.

Note: If no host is specified, this can be interpreted as follows. The integrator must

obtain and set this information in another way, which is not specified in this docu-

ment.

If a host is specified inside the DAT_input_output element PDUs DAT_input_output may only

be received on this host.

Note: If no host is specified, this can be interpreted as follows. The integrator must

obtain and set this information in another way, which is not specified in this docu-

ment.

If a host is specified inside the DAT_parameter element PDUs DAT_parameter may only be re-

ceived on this host.

Distributed Co-Simulation Protocol Specification Version 1.0

 67 / 112

Note: If no host is specified, this can be interpreted as follows. The integrator must

obtain and set this information in another way, which is not specified in this docu-

ment.

4.2.2 User Datagram Protocol (UDP/IPv4)

For UDP over IPv4 transport protocol, all specifications of section 4.2.1 apply. No further specifi-

cations are required.

4.2.3 Transmission Control Protocol (TCP/IPv4)

4.2.3.1 General

For TCP over IPv4 transport protocol, all specifications of section 4.2.1 apply. Furthermore, the

following is required.

4.2.3.2 Length Prefix Framing

For TCP, length-prefix-framing is applied: Each PDU in the TCP stream must be preceded by a

uint32 indicating the length of the PDU, excluding the length field itself.

4.3 Bluetooth Radio Frequency Communication (RFCOMM)

4.3.1 General

A DCP slave using Bluetooth is accessible through an address (BD_ADDR) and a port number.

This information is defined within the DCP slave description. For communication with a DCP mas-

ter, the DCP slave replies to the address and port where the initial STC_register is coming

from.

Note: A DCP master could be implemented as a Bluetooth client, whereas a DCP slave

could be implemented as a Bluetooth server.

The BD_ADDR is a unique and permanent 48-bit address number created in accordance with sec-

tion 8.2 ("Universal addresses") of the IEEE 802-2014 [7].

4.3.2 Transport Protocol Specific Fields

The field port specifies a port number.

The field bd_addr specifies a Bluetooth device address.

Implementation hint: The RFCOMM available ports are limited to a range between 1

and 30.

4.3.3 Network Information

The master distributes the communication information relevant for data exchange using the fol-

lowing two PDUs: CFG_target_network_information is sent to the sending DCP slave. It con-

tains the BD_ADDR and port number of the receiving DCP slave.

Implementation hint: If multiple network information with the same data_id is re-

ceived by a DCP slave, the DAT_input_output PDU is to be sent to all specified tar-

gets within the CFG_target_network_information.

CFG_source_network_information is sent to the receiving DCP slave. It contains a port num-

ber. The receiving DCP slave listens on this port number for incoming data.

The following three tables complete the PDU descriptions of sections 3.3.7.19, 3.3.7.20, and

3.3.7.23, respectively, for Bluetooth RFCOMM.

The Bluetooth specific part of CFG_target_network_information is defined by the following

structure:

Distributed Co-Simulation Protocol Specification Version 1.0

 68 / 112

First Position [Byte] Last Position [Byte] Data type Field

6 6 uint8 transport_protocol

7 7 uint8 port

8 15 uint64 bd_addr

Table 137: CFG_target_network_information

The Bluetooth specific part of the corresponding CFG_param_network_information is defined by

the following structure:

First Position [Byte] Last Position [Byte] Data type Field

6 6 uint8 transport_protocol

7 8 uint16 port

9 12 uint32 bd_address

Table 138: CFG_param_network_information

The Bluetooth specific part of CFG_source_network_information is defined by the following

structure:

First Position [Byte] Last Position [Byte] Data type Field

6 6 uint8 transport_protocol

7 7 uint8 port

8 15 uint64 bd_addr

Table 139: CFG_source_network_information

4.3.4 Port information

If a port is specified inside the Control element (see section 5.11.2), Control PDUs may only be

received over this port.

Note: If no such port is specified, this can be interpreted in two different ways. First,

the integrator must obtain and set this information in another way, which is not

specified in this document. Second, the DCP slave is not meant to be controlled via

Bluetooth. The DCP slave provider might be consulted for clarification.

If a port or port range is specified inside the DAT_input_output (see section 5.11.2) element,

PDUs DAT_input_output may only be received over these ports.

Note: If no port or port range is specified inside the DAT_input_output element, this

can be interpreted in three different ways. First, the integrator must obtain and set

this information in another way, which is not specified in this document. Second, the

DCP master is free to choose the port numbers. The DCP slave may reject the use of

requested ports using PDU RSP_nack and the corresponding error code. Third, the

DCP slave is not meant to exchange PDUs DAT_input_output using Bluetooth

RFCOMM. The DCP slave provider might be consulted for clarification.

If a port or port range is specified inside the DAT_parameter element, PDUs DAT_parameter may

only be received over these ports.

Note: If no port or port range is specified inside the DAT_parameter element, this can

be interpreted in three different ways. First, the integrator must obtain and set this

information in another way, which is not specified in this document. Second, the DCP

master is free to choose the port numbers. The DCP slave may reject the use of re-

quested ports using PDU RSP_nack PDU and the corresponding error code. Third, the

DCP slave is not meant to exchange PDUs DAT_parameter using Bluetooth RFCOMM.

The DCP slave provider might be consulted for clarification.

Some port numbers might already be used or reserved for dedicated services.

Distributed Co-Simulation Protocol Specification Version 1.0

 69 / 112

4.3.5 PDUs in RFCOMM stream

For RFCOMM, length-prefix-framing is applied: Each PDU in the RFCOMM stream must be pre-

ceded by an uint32 indicating its length.

4.4 Universal Serial Bus (USB)

4.4.1 USB Version

The target USB version is 2.0. For simplicity the term USB is used for USB 2.0.

4.4.2 General

A DCP master must be implemented on the USB host side, whereas a DCP slave must be imple-

mented as a USB device. A DCP slave using USB is accessible through the slave uuid. The USB

host driver for DCP must manage the mapping between slave uuid & DCP slave id and assigned

USB number.

Figure 7: USB scheme

The DCP protocol for USB is defined by the DCP class. Every DCP class device consists of the

following pipes:

• The Control Pipe is used for receiving and responding to requests for USB control and

class data.

• The Request Pipe is used for receiving Request PDUs from the master.

• The Response_Notification Pipe is used for sending Response and Notification PDUs to the

master.

• A Data-Out pipe is used to receive Data from other slaves or from the master.

• A Data-In pipe is used to send DAT_input_output to other slaves or to the master.

• A vendor can define multiple Data-Out and Data-In pipes. There must be at least one Da-

ta-In pipe if there exists at least one output variable at the DCP slave. There must be at

least one Data-Out pipe if there exists at least one input variable or parameter at the DCP

slave.

4.4.3 Transport Protocol Specific PDU Fields

4.4.3.1 Endpoint Address

The field endpoint_address is used to specify an endpoint address.

4.4.4 Descriptors

The following sections describe the applied USB Descriptors used for the DCP USB class. The de-

vice and configuration descriptor are vendor specific. There must be at least one Interface de-

DCP Class Device DCP Class Driver

Control Pipe (default)

Request Pipe (Interrupt)

Response_Notification Pipe (Interrupt)

Data-Out Pipe 1 (Isochronous or Interrupt)

Data-In Pipe 1 (Isochronous or Interrupt)

Data-Out Pipe N (Isochronous or Interrupt)

Data-In Pipe N (Isochronous or Interrupt)

…

Distributed Co-Simulation Protocol Specification Version 1.0

 70 / 112

scriptor for the DCP containing a DCP Descriptor, as well as the endpoint descriptors used for the

DCP slave.

4.4.4.1 Interface

First

Position

[Byte]

Last

Position

[Byte]

Data-

type

Field Name Value

0 0 uint8 bLength 9

1 1 uint8 bDescriptorType 4

2 2 uint8 bInterfaceNumber Vendor Specific

3 3 uint8 bAlternateSetting Vendor Specific

4 4 uint8 bNumEndpoints Vendor Specific

5 5 uint8 bInterfaceClass 255 2

6 6 uint8 bInterfaceSubClass 205 2

7 7 uint8 bInterfaceProtocol 205 2

8 8 uint8 iInterface Vendor Specific

Table 140: Interface descriptor

2 Implementation Hint: Because an official USB class for DCP does not exist at the

moment, the vendor specific class is used. Therefore 205 is selected as an arbitrary

number to define the subclass and protocol.

First

Position

[Byte]

Last

Position

[Byte]

Data-

type

Field Name Value

0 0 uint8 bLength 9

1 1 uint8 bDescriptorType 4

2 18 byte[] slave_uuid Vendor Specific

Table 141: DCP descriptor

4.4.4.2 Endpoint

First

Position

[Byte]

Last

Position

[Byte]

Data-

type

Field Name Value

0 0 uint8 bLength 7

1 1 uint8 bDescriptorType 5

2 2 uint8 bEndpointAddress 16 (00010000Bin)

3 3 uint8 bmAttributes 3 (00000011Bin)

4 5 uint16 wMaxPacketSize 1024

6 6 uint8 bInterval 16

Table 142: Request pipe

First

Position

[Byte]

Last

Position

[Byte]

Data-

type

Field Name Value

0 0 uint8 bLength 7

1 1 uint8 bDescriptorType 5

2 2 uint8 bEndpointAddress 33 (00100001Bin)

3 3 uint8 bmAttributes 3 (00000011Bin)

4 5 uint16 wMaxPacketSize 1024

6 6 uint8 bInterval 16

Table 143: Response-notification pipe

Distributed Co-Simulation Protocol Specification Version 1.0

 71 / 112

First

Position

[Byte]

Last

Position

[Byte]

Data-

type

Field Name Value

0 0 uint8 bLength 7

1 1 uint8 bDescriptorType 5

2 2 uint8 bEndpointAddress Vendor Specific 3

3 3 uint8 bmAttributes Vendor Specific 4

4 5 uint16 wMaxPacketSize 1024

6 6 uint8 bInterval Vendor Specific

Table 144: Data-out pipe

3 Must be constructed according to the USB standard. The endpoint number must be greater than

2. The direction must be 0 (Out).
4 Must be constructed according to the USB standard. The transfer type must be Isochronous or

Interrupt.

First

Position

[Byte]

Last

Position

[Byte]

Data-

type

Field Name Value

0 0 uint8 bLength 7

1 1 uint8 bDescriptorType 5

2 2 uint8 bEndpointAddress Vendor Specific 5

3 3 uint8 bmAttributes Vendor Specific 6

4 5 uint16 wMaxPacketSize 1024

6 6 uint8 bInterval Vendor Specific

Table 145: Data-in pipe

5 Must be constructed according to the USB standard. The endpoint number must be greater

than 2. The direction must be 1 (In).
6 Must be constructed according to the USB standard. The transfer type must be Isochronous or

Interrupt.

4.4.5 Network Information

The USB specific part of CFG_target_network_information is defined by the following struc-

ture:

First Position [Byte] Last Position [Byte] Data type Field

6 6 uint8 transport_protocol = 0x5

7 7 uint8 endpoint_address

8 23 byte[16] slave_uuid

Table 146: CFG_target_network_information

The USB specific part of CFG_source_network_information is defined by the following struc-

ture:

First Position [Byte] Last Position [Byte] Data type Field

6 6 uint8 transport_protocol = 0x5

7 7 uint8 endpoint_address

Table 147: CFG_source_network_information

The USB specific part of CFG_param_network_information is defined by the following structure:

Distributed Co-Simulation Protocol Specification Version 1.0

 72 / 112

First Position [Byte] Last Position [Byte] Data type Field

6 6 uint8 transport_protocol = 0x5

7 7 uint8 endpoint_address

Table 148: CFG_param_network_information

4.4.6 DAT_input_output forwarding

According to the USB standard communication is only possible between USB host and USB de-

vice. The USB host driver must forward the DAT_input_output PDU to the corresponding USB

device for slave-to-slave communication.

4.5 CAN Bus Communication Systems

This specification supports CAN bus communication systems. Due to the facts that

• the CAN payload is limited to 8 bytes,

• CAN does not support fragmentation,

• CAN uses its own addressing schema (arbitration)

• and thus not all Control PDUs can be sent via CAN as defined in native DCP specification

the DCP specification for CAN bus is non-native. This specification of DCP over CAN supports the

KCD file format1

In order to map the DCP onto the CAN bus, two additional resources are provided together with

this specification:

• DCP over CAN XSD schema description (DCP_over_CAN.xsd)

• DCP over CAN XSL style sheet (DCP_over_CAN_to_KCD.xsl)

4.5.1 Procedure

The intended procedure is to use the XSD schema to create a configuration in XML file format.

An XSL style sheet is then applied to this XML file, generating a valid KCD file.

4.5.2 DCP over CAN

Figure 8 shows the DCP over CAN root element.

Figure 8: DcpOverCAN root element

Element name Description

KMatrix Contains all elements to describe the messages & signals of the

CAN bus and the participation of the bus members to the messag-

es.

ScenarioConfiguration Contains all elements to describe the co-simulation scenario, which

would be distributed over configuration PDUs in a native DCP

transport protocol for each DCP slave. In addition it contains the

name, DCP id & uuid. Which element belongs to which DCP slave

can be determined using the uuid.

Table 149: DcpOverCan element

1 https://github.com/dschanoeh/Kayak

Distributed Co-Simulation Protocol Specification Version 1.0

 73 / 112

4.5.3 Definition of KMatrix

The element KMatrix is specified as follows. The KMatrix element consist optional of the CAN

message description all state change, information, notification & response PDUs , as well as an

arbitrary number of CAN messages for DAT_input_output & DAT_parameter PDUs. Each state

change, information, notification or response PDU is defined in the following way.

Figure 9: KMatrix element attributes

Attribute name Description

f_<field_name>_data_type The data type of the field <field_name> as integer (see 3.1.10 for

corresponding data type).

f_<field_name>_endianness The endianness of the field <field_name>. “little” means little

endian, “big” means big endian.

Table 150: KMatrix element attributes

Attribute name Description

canId The CAN identifier in the header of the CAN message

senderRef The DCP id of the sending DCP slave. For state change & infor-

mation PDUs this is fix, because only the master (DCP id = 0) can

send this PDU.

length The length of the CAN payload field.

f_<field_name> The starting byte of <field_name> in the CAN payload. “H” means

that this field is not contained in the CAN payload and its value can

be determined by the CAN identifier in the header.

Table 151: Attributes of every state change, information, notification & response PDU

Distributed Co-Simulation Protocol Specification Version 1.0

 74 / 112

Figure 10: STC_register PDU

The element DAT_input_output consists of up to eight Payload and up to 254 Receiver ele-

ments. It is defined as follows:

Figure 11: DAT_input_output element

Attribute name Description

canId The CAN identifier in the header of the CAN message

senderRef The DCP id of the sending DCP slave.

dataId The data id of the DAT_input_output PDU.

length The length of the CAN payload field.

f_<field_name> The starting byte of <field_name> in the CAN payload. “H” means that

this field is not contained in the CAN payload and its value can be deter-

mined by the CAN identifier in the header.

dcpId The DCP id of the DCP slave which receives this CAN message.

Table 152: DAT_input_output element attributes

In DAT_input_output, the Payload element contains the definition of one output from the send-

ing DCP slave. The choice of the Payload element defines the data type of the output. Payload

is defined as follows:

Distributed Co-Simulation Protocol Specification Version 1.0

 75 / 112

Figure 12: Payload element

Attribute name Description

name The name of the output.

offset The starting byte of the output in the CAN payload.

Note: This is not equal to the position in the CFG_output

PDU.

unit The unit of the send output.

min The minimum of the output

max The maximum of the output.

endianness The endianness of the output. “little” means little endian, “big” means

big endian.

Figure 13: Payload element attributes

Distributed Co-Simulation Protocol Specification Version 1.0

 76 / 112

The element DAT_parameter consists of up to eight Payload and up to 254 receiver elements. It

is defined as follows.

Figure 14: DAT_parameter element

Attribute name Description

canId The CAN identifier in the header of the CAN message

senderRef The DCP id of the sending DCP slave.

paramId The parameter id of the DAT_parameter PDU.

length The length of the CAN payload field.

f_<field_name> The starting byte of <field_name> in the CAN payload. “H” means

that this field is not contained in the CAN payload and its value can

be determined by the CAN identifier in the header.

dcpId The DCP id of the DCP slave which receives this CAN message.

Table 153: Attributes of DAT_parameter

Distributed Co-Simulation Protocol Specification Version 1.0

 77 / 112

4.5.4 Definition of the Scenario Configuration

The element ScenarioConfiguration is defined as follows:

Figure 15: ScenarioConfiguration element

Attribute name Description

name The name of the DCP slave.

uuid The uuid of the DCP slave.

dcpId The DCP id of the DCP slave.

All other attributes See section 3.4 for further description.

Table 154: Attributes of ScenarioConfiguration and subsequent elements

Distributed Co-Simulation Protocol Specification Version 1.0

 78 / 112

5 DCP Slave Description

5.1 General

All static information related to a DCP slave is stored in an accompanying DCP file. The require-

ments for this file and its internal structure are specified in section 3.1.4. The DCP file must con-

tain at least one DCP slave description file, which is a text file in XML format. It is specified in

detail in this section. The provider of a DCP slave shall ensure that the accompanying DCP file

reflects the implementation of the delivered DCP slave. The DCP slave file shall be consistent

with the delivered DCP slave at all times. The distribution mechanism of the DCP file is arbitrary.

The file extension of a DCP slave description file is “.dcpx”. The structure of this XML file is de-

fined using the schema file dcpSlaveDescription.xsd. This schema file utilizes the following

helper schema files:

dcpAnnotation.xsd
dcpAttributeGroups.xsd
dcpDataTypes.xsd
dcpTransportProtocolTypes.xsd
dcpType.xsd
dcpUnit.xsd
dcpVariable.xsd

These XSD schema files comply with the XSD 1.1 specification [8]. In this section these schema

files are discussed. The normative definition are the above mentioned schema files2. Optional

elements are indicated using a dashed box. The required data types (e.g. xs:normalizedString)

are defined in the XML-schema standard (see http://www.w3.org/TR/xmlschema-2 for more in-

formation).

5.2 Use of Assertions and Constraints

The schema files contain assertions and constraints to support formal verification of properties

and dependencies as stated in this specification document. XSD 1.0 compliant schema files may

be created by transformation using the provided XSLT file (Extensible Stylesheet Language

Transformation):

dcpx_xsd11_to_xsd10.xslt

Note: This XSLT file is provided together with the XSD schema files to ensure correct

transformation. It is intended to remove the assertions.

Note: The defined assertions and constraints were removed from this section’s figures

to facilitate better legibility.

2 The screenshots of this section have been generated from the schema files with the tool “Altova XMLSpy”. Please see

www.altova.com.

Distributed Co-Simulation Protocol Specification Version 1.0

 79 / 112

5.3 Data Type Definitions

The data types used in the DCP schema files are as follows:

XML DCP equivalent Description

xs:unsignedByte uint8 unsignedByte is derived from unsignedShort by set-

ting the value of maxInclusive to be 255. The base

type of unsignedByte is unsignedShort.

xs:unsignedShort uint16 unsignedShort is derived from unsignedInt by set-

ting the value of maxInclusive to be 65535. The

base type of unsignedShort is unsignedInt.

xs:unsignedInt uint32 unsignedInt is derived from unsignedLong by setting

the value of maxInclusive to be 4294967295. The

base type of unsignedInt is unsignedLong.

xs:unsignedLong uint64 unsignedLong is derived from nonNegativeInteger by

setting the value of maxInclusive to be

18446744073709551615. The base type of unsign-

edLong is nonNegativeInteger.

xs:byte int8 int is derived from long by setting the value of max-

Inclusive to be 2147483647 and minInclusive to be

-2147483648. The base type of int is long.

xs:short int16 short is derived from int by setting the value of max-

Inclusive to be 32767 and minInclusive to be -

32768. The base type of short is int.

xs:int int32 int is derived from long by setting the value of max-

Inclusive to be 2147483647 and minInclusive to be

-2147483648. The base type of int is long.

xs:long int64 long is derived from integer by setting the value of

maxInclusive to be 9223372036854775807 and

minInclusive to be

-9223372036854775808. The base type of long is

integer.

xs:float float32 float is patterned after the IEEE single-precision 32-

bit floating point type (see IEEE 754-1985)

xs:double float64 The double datatype is patterned after the IEEE

double-precision 64-bit floating point type (see IEEE

754-1985)

xs:normalizedString string String without carriage return, line feed, and tab

characters.

xs:dateTime Implementation

specific

Date, time and time zone

Example: 2002-10-23T12:00:00Z

(noon on October 23, 2002, Greenwich Mean Time)

Table 155: DCP slave description data types

The first line of the DCP slave description must contain its encoding scheme. It is required that

the encoding scheme is always UTF-8:

<?xml version="1.0" encoding="UTF-8"?>

The DCP schema files (*.xsd) are also stored in UTF-8.

Note: The definition of an encoding scheme is a prerequisite, in order for the XML file

to contain letters outside of the 7 bit ANSI ASCII character set, such as German um-

lauts, or Asian characters.

The special values NAN, +INF, -INF for variables values are not allowed in the DCP XML files.

Note: Child elements, defined by sequence of elements in the DCP slave description,

are ordered lists according to document order, whereas attribute information items

are unordered sets (see http://www.w3.org/TR/XML-infoset/#infoitem.element). The

Distributed Co-Simulation Protocol Specification Version 1.0

 80 / 112

DCP slave description schema is based on ordered lists in a sequence and therefore

parsing must preserve this order.

5.4 Definition of dcpSlaveDescription Element

This is the root level schema file and contains the following definition (the figure below shows all

elements in the schema file. Data is defined as attributes to these elements, not shown in this

figure).

Figure 16: DCP slave description root level XSD schema

Distributed Co-Simulation Protocol Specification Version 1.0

 81 / 112

On the top level, the schema consists of the following elements.

Element name Description

OpMode Valid operating modes of the described DCP slave.

UnitDefinitions A global list of unit and display unit definitions (see section 5.6).

TypeDefinitions A global list of type definitions.

VendorAnnotations Additional vendor specific data. May be ignored.

TimeRes A list of permissible single time resolutions and resolution ranges.

Heartbeat If present, the DCP slave uses the given settings to monitor a

heartbeat signal provided by the DCP master.

TransportProtocols This element contains information for all available DCP slave DCP

drivers.

CapabilityFlags The attributes under this element indicate a DCP slave’s capabili-

ties.

Variables The central DCP slave data structure defining all variables of the

DCP slave that are visible/accessible via DCP.

Log This element contains categories and templates for logging.

Table 156: DCP slave description root level elements

The XML attributes of dcpSlaveDescription are as follows.

Figure 17: dcpSlaveDescription element attributes

Distributed Co-Simulation Protocol Specification Version 1.0

 82 / 112

Attribute name Description

dcpMajorVersion The DCP major version that was used to generate the DCPX file

and accompanying DCP slave. See section 3.1.2.

dcpMinorVersion The DCP minor version that was used to generate the DCPX file

and accompanying DCP slave. See section 3.1.2.

dcpSlaveName The name of the complete DCP slave.

uuid The universally unique identifier is a string that is used to unique-

ly identify a DCP slave in a global environment. The uuid acts as

a fingerprint of relevant information. Typically, the uuid is as-

signed when the DCP slave description file is generated. It is used

for verification during the registration process of a DCP slave.

description Optional string that contains a brief description of the complete

DCP slave.

author Optional string that contains name and organization of the DCP

slave author.

version Optional development version number of the DCP slave.

copyright Optional information on the intellectual property copyright for this

DCP slave.

license Optional information on the intellectual property licensing for this

DCP slave.

generationTool Optional information about the tool the DCPX file was generated

with.

generationDateAndTime Optional date and time when the DCPX file was generated. The

format is a subset of “xs:dateTime” and should be: “YYYY-MM-

DDThh:mm:ssZ" (with one “T” between date and time; “Z” char-

acterizes the Zulu time zone, in other words Greenwich mean-

time).

variableNamingConvention Defines whether the variable names in Variables/Variable/name

and in TypeDefinitions/SimpleType/name follow a particular con-

vention. Available options are:

flat: A string (the default).

structured: Names including “.” as hierarchy separator.

See section 3.1.18.1 for details.

Table 157: dcpSlaveDescription element attributes

5.5 Definition of OpMode Element

Element name Description

HardRealTime If present, the DCP slave is capable of operating in hard real time

mode.

SoftRealTime If present, the DCP slave is capable of operating in soft real time

mode.

NonRealTime If present, the DCP slave is capable of operating in non real time

mode.

Table 158: Operating modes

Distributed Co-Simulation Protocol Specification Version 1.0

 83 / 112

At least one of the available operating modes must be implemented. The attributes for the non-

real-time operating mode are specified in Table 159.

Attribute Description

defaultSteps The default number of steps. This is an optional attribute, its de-

fault value equals to 1.

fixedSteps Indicate that the given number of steps is fixed. This is an optional

boolean attribute, its default value is true.

minSteps The minimum permissible number of steps. This is an optional

attribute.

maxSteps The maximum permissible number of steps. This is an optional

attribute.

Table 159: Non-real-time operating mode attributes.

5.6 Definition of UnitDefinitions Element

Note: This definition of units corresponds with the definition of units in FMI 2.0 [9].

This section recapitulates the most important definitions for completeness. For exam-

ples and the full definitions, see the FMI 2.0 specification document.

The dcpUnit type is specified as shown in Figure 18. If the UnitDefinitions element is present, it

contains one or more Unit elements.

Figure 18: dcpUnit Type

Element name Description

name A name of String data type.

Table 160: dcpUnit element attributes

Distributed Co-Simulation Protocol Specification Version 1.0

 84 / 112

The Unit element contains one BaseUnit element, having the attributes defined in Table 161.

Attribute name Description

kg Optional attribute of integer data type. Its default value is zero.

m Optional attribute of integer data type. Its default value is zero.

s Optional attribute of integer data type. Its default value is zero.

A Optional attribute of integer data type. Its default value is zero.

K Optional attribute of integer data type. Its default value is zero.

mol Optional attribute of integer data type. Its default value is zero.

cd Optional attribute of integer data type. Its default value is zero.

rad Optional attribute of integer data type. Its default value is zero.

factor Optional attribute of double data type. Its default value is 1.0.

offset Optional attribute of double data type. Its default value is 0.0.

Table 161: Base unit element attributes

A value with respect to Unit (abbreviated as “Unit_value”) is converted with respect to BaseUnit

(abbreviated as “BaseUnit_value”) using the equation:

BaseUnit_value = factor * Unit_value + offset

The Unit element contains an optional DisplayUnit element. It contains the attributes as de-

fined in Table 162.

Attribute name Description

name Attribute of normalizedString data type.

factor Optional attribute of double data type. Its default value is 1.0.

offset Optional attribute of double data type. Its default value is 0.0.

Table 162: DisplayUnit element attributes

Distributed Co-Simulation Protocol Specification Version 1.0

 85 / 112

5.7 Definition of TypeDefinitions Element

5.7.1 General

The TypeDefinitions element is defined as follows.

Figure 19: dcpSimpleType type

The optional TypeDefinitions element includes a list of SimpleType elements of type dcpSim-
pleType having the list of attributes defined in Table 163.

Attribute name Description

name Name of this simple type.

description An optional description.

Table 163: dcpSimpleType element attributes

5.7.2 Definition of Data Types and Attributes

All unsigned integer (data type id 0 to 3), integer (data type id 4 to 7) float (data type id 8 and

9), string (data type id 10) and binary (data type id 11) data types have subsets of different at-

tributes. For data type definitions see section 3.1.10.

Distributed Co-Simulation Protocol Specification Version 1.0

 86 / 112

Attribute Description

declaredType The declared type of the variable.

displayUnit The default display unit. The conversion to the “unit” is defined with the ele-

ment “<dcpSlaveDescription><UnitDefinitions>”. If the corresponding “dis-

playUnit” is not defined under “<UnitDefinitions><Unit><DisplayUnit>”,

then displayUnit is ignored.

This attribute is optional.

This attribute is defined for Float32 and Float64 data types.

gradient The gradient attribute indicates that the DCP slave variable is designed to

change at a maximum permissible rate. Its unit is 1/s, and the data type

corresponds to the variable data type.

This attribute is optional.

This attribute is defined for all integer and float data types.

max The max attribute indicates that the DCP slave variable is designed to operate

at or below an upper bound value (Variable value >= max).

The data type of this attribute corresponds to the parent element.

This attribute is optional.

This attribute is defined for all integer and float data types.

maxSize This defines the maximum size of the data type in bytes. Its data type is un-

signed integer.

This attribute is optional.

This attribute is defined for String and Binary data types.

mimeType The MIME type of the data type.

This attribute is optional.

This attribute is defined for String data type.

min The min attribute indicates that the DCP slave variable is designed to operate

at or above a lower bound value (Variable value >= min).

The data type of this attribute corresponds to the parent element.

This attribute is optional.

This attribute is defined for all integer and float data types.

nominal Nominal value of variable. If not defined and no other information about the

nominal value is available, then nominal = 1 is assumed.

Note: The nominal value of a variable can be, for example used to

determine the absolute tolerance for this variable as needed by

numerical algorithms: absoluteTolerance = nominal * tolerance

*0.01 where tolerance is, e.g., the relative tolerance.

This attribute is optional.

This attribute is defined for Float32 and Float64 data types.

quantity Physical quantity of the variable, for example “Angle”, or “Energy”. The

quantity names are not standardized.

This attribute is optional.

This attribute is defined for Float32 and Float64 data types.

unit Unit of the variable defined with UnitDefinitions.Unit.name that is used for

the model equations.

For example “N.m”: in this case a Unit.name = "N.m" must be present under

UnitDefinitions.

This attribute is optional.

This attribute is defined for Float32 and Float64 data types.

Table 164: Attributes of all defined variables.

Distributed Co-Simulation Protocol Specification Version 1.0

 87 / 112

5.8 Definition of VendorAnnotations Element

The element VendorAnnotations is of type dcpAnnotation, which is defined as shown in Figure

20.

Figure 20: Annotations type

VendorAnnotations therefore consists of an ordered set of annotations that are identified by the

name of the tool that can interpret additional information stored in place of the any element. The

any element may be an arbitrary XML data structure. Attribute name must be unique with respect

to all other elements of the VendorAnnotations list.

5.9 Definition of TimeRes Element

The element TimeRes is specified as follows.

Figure 21: Time resolution element

Distributed Co-Simulation Protocol Specification Version 1.0

 88 / 112

The TimeRes element contains Resolution or ResolutionRange child elements. Their attributes

are described as follows.

Attribute name Description

numerator Optional numerator value specified as unsigned integer data

type. Its default value is 1.

denominator Optional denominator value specified as unsigned integer

data type. Its default value is 1000.

fixed Optional attribute of boolean data type. Its default value is

true. If the fixed value is true, then there can only be one

single resolution specified.

recommended Optional attribute of boolean data type. If the recommended

value is true, then this single resolution value is recom-

mended for simulation. Multiple recommended single resolu-

tion values are possible.

numeratorFrom This attribute specifies the begin of a numerator resolution

range. Its data type is unsigned integer.

numeratorTo This attribute specifies the end of a numerator resolution

range. Its data type is unsigned integer.

denominator This attribute specifies the denominator for one resolution

range. Its data type is unsigned integer.

Table 165: Time resolution attributes

The number of resolutions specified having the attribute fixed set to true is limited to one. In

this case, it must be the only resolution specified, and the number of ResolutionRange elements

must be zero. Alternatively, a number of Resolution elements having the attribute fixed set to

false may be specified.

5.10 Definition of Heartbeat Element

The optional Heartbeat element is specified as follows. It contains a single MaximumPeriodicIn-
terval element with 2 attributes.

Figure 22: Heartbeat element

Attribute name Description

numerator Optional attribute of unsigned integer data type. Its default

value is 1.

denominator Optional attribute of unsigned integer data type. Its default

value is 1.

Table 166: Heartbeat element attributes

5.11 Definition of TransportProtocols Element

5.11.1 General

The DCP supports multiple transport protocols. The TransportProtocols element is used to

store specific settings.

Distributed Co-Simulation Protocol Specification Version 1.0

 89 / 112

Figure 23: Transport protocols element

Each transport protocol listed under the TransportProtocols element may define a maxPduSize

attribute, as required.

Attribute name Description

maxPduSize Optional attribute of unsigned integer data type, specifying

the maximum permissible size a transport protocol can han-

dle.

5.11.2 IPv4 Type

An element type for Internet Protocol Version 4 is defined. It is used to describe UDP and TCP

transport protocols. Its sub-elements and attributes are shown in Figure 24.

Figure 24: IPv4 type definition

The UDP via IPv4 transport protocol allows separate configurations for different PDU families.

• The optional Control element defines the host and port attributes intended for receiving

PDUs of the Control PDU family.

• The optional DAT_input_output element defines a host attribute, as well as an optional

list of either port ranges, indicated by from and to attributes, or single ports, indicated by

the port attribute. This is intended for receiving DAT_input_output PDUs.

Distributed Co-Simulation Protocol Specification Version 1.0

 90 / 112

• The optional DAT_parameter element defines a host attribute, as well as an optional list

of either port ranges, indicated by from and to attributes, or single ports, indicated by

the port attribute. This is intended for receiving DAT_parameter PDUs.

These recurring attributes are specified in Table 167.

Attribute name Description

host Optional attribute of normalizedString data type.

This attribute may contain one of the following:

• An IP according to RFC 791 [10]

• A hostname according to RFC 952 [11]

• A fully qualified domain name according to RFC

1035 [12]

port Attribute of unsigned short data type.

from Attribute of unsigned short data type.

to Attribute of unsigned short data type.

Table 167: Element attributes of the IPv4 type

5.11.3 UDP/IPv4

The elements and attributes for UDP via IPv4 are based on the IPv4 type described in sec-

tion 5.11.2.

5.11.4 CAN

The DCP specification for CAN bus is defined in a non-native way. No entries are needed here.

5.11.5 USB

The elements and attributes for USB are defined in Table 168.

Attribute name Description

maxPower Optional attribute of unsignedByte data type.

Table 168: USB element attributes

The USB element contains an optional list of DataPipe elements, having the attributes defined in

Table 169.

Attribute name Description

direction Optional attribute of string data type, enumerated with either

“In” or “Out”.

endpointAddress Attribute of unsignedByte data type. Its value must be great-

er than 2.

interval Attribute of unsignedByte data type.

Table 169: DataPipe element attributes

Distributed Co-Simulation Protocol Specification Version 1.0

 91 / 112

Figure 25: USB2 type definition

5.11.6 Bluetooth

The elements and attributes for Bluetooth are shown in Figure 26 and defined as follows.

Figure 26: Bluetooth type definition

The attributes of the Address element are specified in Table 170.

Attribute name Description

bd_addr Attribute of String data type. Its value must comply with the

following regular expression:
([0-9A-Fa-f]{2}[:-]){5}([0-9A-Fa-f]{2})

port Attribute of unsignedByte data type.

Its value is specified to be larger or equal to 1, and smaller

or equal to 30.

alias Optional attribute of type normalizedString.

Table 170: Address element attributes

5.11.7 TCP/IPv4

The elements and attributes for TCP via IPv4 are based on the IPv4 type described in sec-

tion 5.11.2.

Distributed Co-Simulation Protocol Specification Version 1.0

 92 / 112

5.12 Definition of CapabilityFlags Element

The element CapabilityFlags is defined as follows.

Figure 27: Capability flag element and attributes

The following capability flags are defined to indicate the availability of specific functionality. Each

capability flag is of data type bool.

Attribute name Description

canAcceptConfigPdus Indicates that a DCP slave is able to process CFG_input,

CFG_output, CFG_target_network_information, and

CFG_source_network_information PDUs properly. Other-

wise, (1) the DCP slaves addressing needs to be resolved in

a different way, e.g. manually, and (2) DAT_input_output

PDUs need to be configured in a different way, e.g. manu-

ally.

canHandleReset The DCP slave can handle a STC_reset PDU and reset the

state machine from STOPPED to CONFIGURATION and from
ERRORRESOLVED to CONFIGURATION. Otherwise it waits for

STC_deregister to transition to ALIVE.

canHandleVariableSteps Indicates that the DCP slave can handle variable steps in

NRT operating mode.

canMonitorHeartbeat Indicates that a DCP slave is able to monitor a periodic

heartbeat signal sent by a DCP master.

If this capability flag is set to true, the element Heartbeat

according to section 5.10 is required.

canProvideLogOnNotification Indicates that the DCP slave supports logging using notifi-

cations.

canProvideLogOnRequest Indicates that the DCP slave supports logging using the

request-response mechanism.

Table 171: Capability flags

5.13 Definition of Variables Element

The Variables element provides static information on all exposed variables. It contains Varia-
ble child elements.

5.13.1 Definition of Variable Element

A Variable may be either an Input, an Output, a Parameter, or a StructuralParameter. Fig-

ure 28 shows the structure of sub-elements and attributes, as defined by the dcpVariable type.

Distributed Co-Simulation Protocol Specification Version 1.0

 93 / 112

Figure 28: dcpVariable type

Element Description

Input Inputs of the DCP slave.

Output Outputs of the DCP slave.

Parameter Parameters of the DCP slave.

StructuralParameter Structural parameters of the DCP slave.

Annotations dcpAnnotation type, see section 5.8.

Table 172: Variable elements

5.13.2 Definition of Variable Element Attributes

The attributes of the dcpVariable type are defined as follows.

Attribute Description

name The full name of the variable.

This attribute is mandatory.

valueReference A unique handle per DCP slave of the variable, to efficiently identify

the variable value in the DCP.

Its data type is Uint64.

This attribute is required.

description An optional string describing the variable.

variability Enumeration that defines the time dependency of the variable. It de-

termines the time instants a variable is allowed to change its value.

Allowed values:

• fixed: This setting applies to parameters only. The value of the

variable may only be set in state CONFIGURATION. See Table 63,

CFG_parameter.

• tunable: This setting applies to parameters only. The value of the

variable may be set during simulation. See Table 63,

Distributed Co-Simulation Protocol Specification Version 1.0

 94 / 112

DAT_parameter PDU.

• discrete: This setting applies to Inputs and Outputs only. The

value of the variable must at least be communicated on a change,

but at periodic communication intervals.

• continuous: This setting applies to Inputs and Outputs only. The

value of the variable must be communicated at periodic commu-

nication intervals.

preEdge The preEdge attribute defines the negative maximum deviation from

the expected PDU arrival time. Its data type is float64 and its value is

given in seconds.

This attribute is optional.

postEdge The postEdge attribute defines the positive maximum deviation from

the expected PDU arrival time. Its data type is float64 and its value is

given in seconds.

This attribute is optional.

maxConsecMissedPdus This attribute defines the maximum allowed number of consecutively

missed PDUs for the given variable. Its data type is uint32.

declaredType Identifies the name of type defined with TypeDefinitions/SimpleType

providing defaults. This attribute is optional.

A variable takes values from declaredType for its attributes if they are

not defined.

Note: Example

Assume a declared type:

name="TestType" Uint8 min = 4, max = 6.

If a variable defines

declaredType="TestType" Uint8 max = 8,

then the variable would be a Uint8 with a range from 4

and 8.

Table 173: Variable element attributes

5.13.3 Definition of Variable Data Types and Attributes

Inputs, Outputs, Parameters, and StructuralParameters must be assigned a data type. This is

indicated by a corresponding sub-element representing a DCP data type, as defined in section

5.7.2. Table 174 shows these relationships.

Element Data type IDhex

Int8 0x4

Int16 0x5

Int32 0x6

Int64 0x7

Uint8 0x0

Uint16 0x1

Uint32 0x2

Uint64 0x3

Float32 0x8

Float64 0x9

String 0xA

Binary 0xB

Table 174: Data type elements

Distributed Co-Simulation Protocol Specification Version 1.0

 95 / 112

Figure 29: Data types of variables

The possible attributes of these datatypes are defined in Table 175.

Attribute Description

gradient The gradient attribute indicates that the DCP slave variable is designed to change

at a maximum permissible rate. Its unit is 1/s, and the data type corresponds to

the variable data type.

This attribute is optional.

This attribute is defined for all integer and float data types.

max The max attribute indicates that the DCP slave variable is designed to operate at or

below an upper bound value (variable value >= max).

The data type of this attribute corresponds to the parent element.

This attribute is optional.

This attribute is defined for all integer and float data types.

maxSize This defines the maximum size of the data type in bytes. Its data type is unsigned

integer.

This attribute is optional.

This attribute is defined for String and Binary data types.

mimeType The MIME type of the data type.

This attribute is optional.

This attribute is defined for String data type.

min The min attribute indicates that the DCP slave variable is designed to operate at or

above a lower bound value (Variable value >= min).

The data type of this attribute corresponds to the parent element.

This attribute is optional.

This attribute is defined for all integer and float data types.

nominal Nominal value of variable. If not defined and no other information about the nomi-

nal value is available, then nominal = 1 is assumed.

Note: The nominal value of a variable can be, for example used to de-

termine the absolute tolerance for this variable as needed by numerical

algorithms: absoluteTolerance = nominal * tolerance *0.01 where tol-

erance is, e.g., the relative tolerance.

This attribute is optional.

Distributed Co-Simulation Protocol Specification Version 1.0

 96 / 112

This attribute is defined for Float32 and Float64 data types.

quantity Physical quantity of the variable, for example “Angle”, or “Energy”. The quantity

names are not standardized.

This attribute is optional.

This attribute is defined for Float32 and Float64 data types.

start Definition of start value.

This attribute is defined for all data types.

The data type of this attribute corresponds to the parent element.

This attribute is mandatory for inputs, parameters, and structural parameters. This

attribute is optional for outputs. The start value for String and Binary data types is

always optional.

unit Unit of the variable defined with UnitDefinitions.Unit.name that is used for the

model equations.

For example “N.m”: in this case a Unit.name = "N.m" must be present under

UnitDefinitions.

This attribute is optional.

This attribute is defined for Float32 and Float64 data types.

Table 175: Data type attributes

5.13.4 Definition of Output Element Attributes

Attribute Description

defaultSteps This optional attribute specifies the default number of steps of an output.

Its data type is unsigned integer. Its default value is 1.

fixedSteps This optional boolean data type attribute indicates that the number of steps

is fixed and cannot be modified. Its default value is true.

minSteps This optional unsigned integer data type attribute specifies the minimum

number of steps.

maxSteps This optional unsigned integer data type attribute specifies the maximum

number of steps.

initialization This optional boolean data type attribute specifies that the Output value will

not change after leaving the Initialization superstate.

If true, no dependency information during Run superstate must be speci-

fied.

Table 176: Exclusive output variable attributes

5.13.5 Definition of Output Dependencies

The sub-elements and attributes of the Dependencies element are shown in Figure 30.

Figure 30: Dependencies element definition

Distributed Co-Simulation Protocol Specification Version 1.0

 97 / 112

The semantics specified in Table 177 is associated with the sub-elements and attributes of the

Dependencies element.

Element Condition Semantics

Dependencies Element exists Dependency information shall be expressed.

Dependencies Element does not exist No dependency information is expressed.

Initialization Element exists In Initialization superstate, dependencies are

specified. This output depends on the inputs and

parameters referenced by a Dependency element.

If the Initialization element has no childs, no

dependencies between this output and all inputs

and parameters exist.

Initialization Element does not exist In Initialization superstate, no dependencies

are specified.

Note: In that case this output may de-

pend on all inputs and parameters.

Run Element exists In Run superstate, dependencies are specified. This

output depends on the inputs and parameters ref-

erenced by a Dependency element.

If the Run element has no childs, no dependencies

between this output and all inputs and parameters

exist.

Run Element does not exist In Run superstate, no dependencies are specified.

Note: In that case this output may de-

pend on all inputs and parameters.

Dependency vr and dependen-
cyKind given

The described dependency between this output and

the specified input or parameter vr exists with the

specified dependencyKind.

Table 177: Dependency semantics

Attribute Description

vr This is an unsigned integer data type attribute and refers to a varia-

ble, identified through its value reference.

dependencyKind This is an enumerated string data type attribute. Possible options

are linear and dependent.

Table 178: Dependency element attributes

5.13.6 Definition of Multi-Dimensional Data Types

In order to define vector and array data types, the dimensions element is a child element of

DcpVariable. It is defined using dcpDimensionsType, which must have at least one Dimension

child element. The Dimension element must have one out of two attributes, either constant or

linkedVR. This is shown in Figure 31.

Figure 31: Dimensions type definition

Distributed Co-Simulation Protocol Specification Version 1.0

 98 / 112

Table 179 explains the attributes in detail.

Attribute Description

constant This is an unsigned long data type attribute, indicating the con-

stant dimension size of a variable.

linkedVR This is an unsigned long data type attribute, referring to a variable

identified through its value reference.

Table 179: Dimensions type attributes

Figure 32 shows the structural parameter element. It defines four unsigned integer data types

(data type id 0 to 3). Its attributes are given in Table 180.

Figure 32: Structural parameter element.

Attribute Description

start The start value of the structural parameter variable.

Table 180: Structural parameter element attributes

5.14 Definition of Log Element

For a detailed description of the log mechanisms see section 3.1.23.

Figure 33: Log Element

Distributed Co-Simulation Protocol Specification Version 1.0

 99 / 112

Attribute Description

id This defines a log category identifier. Its data type is uint8.

name This defines a name for the log category.

Table 181: Category element attributes

Attribute Description

id This defines a log template identifier. Its data type is uint8.

category This defines a reference to the log category identifier. Its data type is uint8.

level This defines the log level. Its data type is uint8.

msg This defines the log message. Its data type is a string, where placeholders start-

ing with “%” followed by the corresponding data type descriptor are used. It is

possible to escape “%” by using “%%”.

Example: Log message "Initialization at %float32 %%." will result in

"Initialization at 35.5 %."

Table 182: Template element attributes

Distributed Co-Simulation Protocol Specification Version 1.0

 100 / 112

6 Abbreviations

CAN – Controller area network

CFG – Prefix for Configuration PDUs

DAT – Prefix for Data PDUs

DCP – Distributed co-simulation protocol

DCPS – Distributed co-simulation protocol scenario

DCPX – Distributed co-simulation protocol XML

FMI – Functional mock-up interface

FPGA – Field programmable gate array

HRT – Hard real-time

IEEE - Institute of electrical and electronics engineers

INF – Prefix for Information request PDUs

LoN – Log on notification

LoR – Log on request

LSB – Least significant byte

MSB – Most significant byte

MTU – Maximum transmission unit

NRT – Non real-time

NTF – Prefix for Notification PDUs

PDU – Protocol data unit

RSP – Prefix for Response PDUs

SRT – Soft real-time

STC – Prefix for state change PDUs

UDP – User datagram protocol

USB – Universal serial bus

UTF-8 – Unicode transformation format

Distributed Co-Simulation Protocol Specification Version 1.0

 101 / 112

7 Literature

[1] “IEEE Standard for Floating-Point Arithmetic,” IEEE Std 754-2008, pp. 1–70, Aug. 2008.

[2] Unicode Consortium, The Unicode Standard, Version 2.0, no. June. 1996.

[3] “IEEE Standard for a Precision Clock Synchronization Protocol for Networked Measurement

and Control Systems,” IEEE Std 1588-2008, pp. 1–269, Jul. 2008.

[4] R. Pattis, “EBNF : A Notation to Describe Syntax,” pp. 1–19, 2013.

[5] P. J. Leach, R. Salz, and M. H. Mealling, “A Universally Unique IDentifier (UUID) URN

Namespace,” no. 4122. RFC Editor, 2005.

[6] “ISO/DIS 26262:2016 - Road Vehicles - Functional Safety.” International Organization for

Standardization, 2016.

[7] WG 802.1 - Higher Layer LAN Protocols Working Group, “IEEE 802-2014 - IEEE Standard

for Local and Metropolitan Area Networks: Overview and Architecture.” IEEE Standards

Association, 2014.

[8] “W3C XML Schema Definition Language (XSD) 1.1 Part 1: Structures.” W3C., 2012.

[9] “Functional Mock-up Interface for Model Exchange and Co-Simulation, Version 2.0.”

Modelisar Consortium and Modelica Association Project “FMI,” 2014.

[10] J. Postel, “Internet Protocol,” RFC Editor, Sep. 1981.

[11] K. Harrenstien, M. K. Stahl, and E. J. Feinler, “DoD Internet host table specification,” RFC

Editor, 1985.

[12] P. Mockapetris, “Domain names - implementation and specification,” RFC Editor, Nov.

1987.

Distributed Co-Simulation Protocol Specification Version 1.0

 102 / 112

8 Glossary

Term Description

DCP master A DCP master is defined as a black box, communicating by DCP

PDUs over a given transport protocol, controlling at least one DCP

slave.

DCP slave A DCP slave is defined according to this specification, communi-

cating by DCP PDUs over a given transport protocol, being con-

trolled by exactly one DCP master.

Distributed Co-Simulation

Protocol (DCP)

Communication protocol which enables distributed co-simulation.

Distributed Co-Simulation

Protocol Description

Description of a DCP slave in XML file format with the file exten-

sion .dcpx according to this specification.

Distributed Co-Simulation

Protocol File

A ZIP file having the extension .dcp designed to hold DCP de-

scription files.

Distributed Co-simulation

Scenario (DCS)

A DCS is defined as the integration of multiple DCP slaves to per-

form a common simulation task.

Error A DCP slave error is a discrepancy between a computed, ob-

served or measured value or condition, and the true, specified or

theoretically correct value or condition, that concerns violations of

real time requirements or other DCP related functionality.

Failure Termination of the ability of a DCP slave to perform as intended.

Hard Real-Time Time-related criteria (deadlines) must be met at all times. Miss of

a deadline is assumed to result in a total system failure.

Non-real time simulation A simulation in which the simulation time is not synchronous to

the absolute time.

Protocol Data Unit (PDU)

Information that is exchanged as a unit among DCP slaves.

Real-time simulation A simulation in which the simulation time is synchronous to the

absolute time.

Distributed Co-Simulation Protocol Specification Version 1.0

 103 / 112

9 Acknowledgments

Development of a DCP release candidate version was

achieved in scope of the ITEA 3 project ACOSAR.

www.itea3.org

www.acosar.eu

This project was co-funded by the

Austrian Research Promotion Agency (FFG)

This project was co-funded by the

Federal Ministry of Education and Research (BMBF)

ACOSAR Project Participants

• Kompetenzzentrum - Das virtuelle Fahrzeug, Forschungsgesellschaft mbH

(„VIRTUAL VEHICLE“) (AT, Leader)

• AVL List Gmbh (AT)

• Spath MicroElectronicDesign (AT)

• Dr. Ing. h.c. F. Porsche AG (DE)

• Volkswagen AG (DE)

• Robert Bosch GmbH (DE)

• ETAS GmbH (DE)

• dSPACE GmbH (DE)

• ESI ITI GmbH (DE)

• TWT GmbH Science & Innovation (DE)

• RWTH Aachen University (DE)

• Technische Universität Ilmenau (DE)

• Leibniz University of Hannover (DE)

• ks.MicroNova GmbH (DE)

• Renault SAS (FR)

• Siemens Industry Software SAS (FR)

Distributed Co-Simulation Protocol Specification Version 1.0

 104 / 112

10 Appendix

A. Key Words to Indicate Requirement Levels

The following definitions are taken from RFC 2119.

MUST: This word, or the terms "REQUIRED" or "SHALL", mean that the definition is an absolute

requirement of the specification.

MUST NOT: This phrase, or the phrase "SHALL NOT", mean that the definition is an absolute

prohibition of the specification.

SHOULD: This word, or the adjective "RECOMMENDED", mean that there may exist valid reasons

in particular circumstances to ignore a particular item, but the full implications must be under-

stood and carefully weighed before choosing a different course.

SHOULD NOT: This phrase, or the phrase "NOT RECOMMENDED" mean that there may exist valid

reasons in particular circumstances when the particular behavior is acceptable or even useful,

but the full implications should be understood and the case carefully weighed before implement-

ing any behavior described with this label.

MAY: This word, or the adjective "OPTIONAL", mean that an item is truly optional. One vendor

may choose to include the item because a particular marketplace requires it or because the ven-

dor feels that it enhances the product while another vendor may omit the same item. An imple-

mentation which does not include a particular option MUST be prepared to interoperate with an-

other implementation which does include the option, though perhaps with reduced functionality.

In the same vein an implementation which does include a particular option MUST be prepared to

interoperate with another implementation which does not include the option (except, of course,

for the feature the option provides.)

Guidance in the use of these Imperatives: Imperatives of the type defined in this memo must be

used with care and sparingly. In particular, they MUST only be used where it is actually required

for interoperation or to limit behavior which has potential for causing harm (e.g., limiting re-

transmissions). For example, they must not be used to try to impose a particular method on im-

plementors where the method is not required for interoperability.

Security Considerations: These terms are frequently used to specify behavior with security impli-

cations. The effects on security of not implementing a MUST or SHOULD, or doing something

the specification says MUST NOT or SHOULD NOT be done may be very subtle. Document au-

thors should take the time to elaborate the security implications of not following recommenda-

tions or requirements as most implementors will not have had the benefit of the experience and

discussion that produced the specification.

Distributed Co-Simulation Protocol Specification Version 1.0

 105 / 112

B. Default DCP Slave Integration

The following Figure 34 sketches the procedure for default DCP slave integration using the native

DCP specification. A DCP slave provider ships a DCP slave description in DCPX file format and a

DCP slave to the DCP integrator. The DCP integrator uses the DCP slave description for configu-

ration of a scenario. This scenario description is exported to a DCP master. The DCP master is an

implementation being able to control DCP slaves. It generates a configuration for simulation and

rolls out this configuration to the running instances of the DCP slaves. Then the scenario may be

simulated.

Note: This specification covers the intended behavior of a DCP slave and the DCP

slave description. This specification does not cover the import process of DCP slave

descriptions, the generation of a valid scenario configuration, the scenario description

being exported to the DCP master, the exact steps necessary for DCP slave instantia-

tion, as well as DCP slave implementation details.

Figure 34: Default DCP slave integration

Distributed Co-Simulation Protocol Specification Version 1.0

 106 / 112

C. Example: Encoding of Variables

The following tables show the intended encoding of variables when transmitted using the DCP.

Parts of
Coloring

Floating Point Integer

Sign Sign

Exponent -

Fraction -

Table 183: Color Indicators

Decimal 42

Binary 0 0 1 0 1 0 1 0

Hex 0x2A

 MSB LSB

Position n

DAT_input_outputBin 0 0 1 0 1 0 1 0

DAT_input_outputHex 0x2A

Table 184: Example uint8

Decimal 7963

Binary 0 0 0 1 1 1 1 1 0 0 0 1 1 0 1 1

Hex 0x1F 0x1B

 MSB LSB

Position n n + 1

DAT_input_outputBin 0 0 0 1 1 0 1 1 0 0 0 1 1 1 1 1

DAT_input_outputHex 0x1B 0x1F

Table 185: Example uint16

Distributed Co-Simulation Protocol Specification Version 1.0

 107 / 112

Decimal 335960

Binary 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 1 0 1 1 0 0 0

Hex 0x00 0x05 0x20 0x58

 MSB LSB

Position n n + 1 n + 2 n + 3

DAT_input_outputBin 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0

DAT_input_outputHex 0x58 0x20 0x05 0x00

Table 186: Example uint32

Decimal 622553314543962266

Binary 0 0 0 0 1 0 0 0

0x08

1 0 1 0 0 0 1 1

0xA3

1 1 0 0 0 0 0 0

0xC0

1 1 1 1 0 0 0 0

0xF0

1 1 1 0 1 1 1 1

0xEF

0 0 1 0 0 0 1 0

0x22

1 0 0 0 1 0 0 0

0x88

1 0 0 1 1 0 1 0

0x9A

Hex

 MSB LSB

Position n

1 0 0 1 1 0 1 0

0x9A

n + 1

1 0 0 0 1 0 0 0

0x88

n+ 2

0 0 1 0 0 0 1 0

0x22

n + 3

1 1 1 0 1 1 1 1

0xEF

n + 4

1 1 1 1 0 0 0 0

0xF0

n + 5

1 1 0 0 0 0 0 0

0xC0

n + 6

1 0 1 0 0 0 1 1

0xA3

n + 7

0 0 0 0 1 0 0 0

0x08

DAT_input_outputBin

DAT_input_outputHex

Table 187: Example uint64

Distributed Co-Simulation Protocol Specification Version 1.0

 108 / 112

Decimal -113

Binary 1 0 0 0 1 1 1 1

Hex 0x8F

 MSB LSB

Position n

DAT_input_outputBin 1 0 0 0 1 1 1 1

DAT_input_outputHex 0x8F

Table 188: Example int8

Decimal -4963

Binary 1 1 1 0 1 1 0 0 1 0 0 1 1 1 0 1

Hex 0xEC 0x9D

 MSB LSB

Position n n + 1

DAT_input_outputBin 1 0 0 1 1 1 0 1 1 1 1 0 1 1 0 0

DAT_input_outputHex 0x9D 0xEC

Table 189: Example int16

Decimal -89498498

Binary 1 1 1 1 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 1 1 0 0 0 1 1 1 1 1 1 0

Hex 0xFA 0xAA 0x5C 0x7E

 MSB LSB

Position N n + 1 n + 2 n + 3

DAT_input_outputBin 0 1 1 1 1 1 1 0 0 1 0 1 1 1 0 0 1 0 1 0 1 0 1 0 1 1 1 1 1 0 1 0

DAT_input_outputHex 0x7E 0x5C 0xAA 0xFA

Table 190: Example int32

Distributed Co-Simulation Protocol Specification Version 1.0

 109 / 112

Decimal -8789498491988154686

Binary 1 0 0 0 0 1 1 0

0x86

0 0 0 0 0 1 0 1

0x05

0 1 1 0 1 1 0 1

0x6D

1 0 1 1 0 0 0 0

0xB0

1 0 1 1 0 1 1 1

0xB7

0 0 1 1 0 1 1 0

0x36

1 1 1 0 0 1 1 0

0xE6

1 1 0 0 0 0 1 0

0xC2

Hex

 MSB LSB

Position n

1 1 0 0 0 0 1 0

0xC2

n + 1

1 1 1 0 0 1 1 0

0xE6

n+ 2

0 0 1 1 0 1 1 0

0x36

n + 3

1 0 1 1 0 1 1 1

0xB7

n + 4

1 0 1 1 0 0 0 0

0xB0

n + 5

0 1 1 0 1 1 0 1

0x6D

n + 6

0 0 0 0 0 1 0 1

0x05

n + 7

1 0 0 0 0 1 1 0

0x86

DAT_input_outputBin

DAT_input_outputHex

Table 191: Example int64

Decimal 7256.2568359375

Binary 0 1 0 0 0 1 0 1 1 1 1 0 0 0 1 0 1 1 0 0 0 0 1 0 0 0 0 0 1 1 1 0

Hex 0x45 0xE2 0xC2 0x0E

 MSB LSB

Position n n + 1 n + 2 n + 3

DAT_input_outputBin 0 0 0 0 1 1 1 0 1 1 0 0 0 0 1 0 1 1 1 0 0 0 1 0 0 1 0 0 0 1 0 1

DAT_input_outputHex 0x0E 0xC2 0xE3 0x45

Table 192: Example float32

Decimal 46.42829231507700882275457843206822872161865234375

Binary 0 1 0 0 0 0 0 0

0x40

0 1 0 0 0 1 1 1

0x47

0 0 1 1 0 1 1 0

0x36

1 1 0 1 0 0 1 0

0xD2

0 1 0 0 1 0 0 0

0x48

0 0 1 1 0 0 0 1

0x57

0 0 1 1 0 0 0 1

0x31

0 0 1 0 0 0 1 1

0x23

Hex

 MSB LSB

Position n

0 0 1 0 0 0 1 1

0x23

n + 1

0 0 1 1 0 0 0 1

0x31

n+ 2

0 0 1 1 0 0 0 1

0x57

n + 3

0 1 0 0 1 0 0 0

0x48

n + 4

1 1 0 1 0 0 1 0

0xD2

n + 5

0 0 1 1 0 1 1 0

0x36

n + 6

0 1 0 0 0 1 1 1

0x47

n + 7

0 1 0 0 0 0 0 0

0x40

DAT_input_outputBin

DAT_input_outputHex

Table 193: Example float64

Distributed Co-Simulation Protocol Specification Version 1.0

 110 / 112

D. Example: Data Exchange

The following Figure 35 shows an example of necessary steps for configuration roll-out using

native DCP (UDP over IPv4).

Note: For better legibility all values are in human readable format. On the communi-

cation medium these values are transported as defined in this specification.

Figure 35: Example configuration roll-out

Distributed Co-Simulation Protocol Specification Version 1.0

 111 / 112

E. Recovery Procedure

The procedure of Table 194 can be used to reach the ALIVE state, from any other state.

Sequence number Action

1 Query state using INF_state.

2a If the resulting state is within the superstate Stoppable,

1) the DCP master sends STC_stop

2) waits for the DCP slave to be in state STOPPED

3) the DCP master sends STC_deregister.

2b If the resulting state is CONFIGURATION,

1) the DCP master sends STC_deregister.

2c If the resulting state is within the superstate Error,

1) the DCP master waits for the DCP slave to be in state ERRORRESOLVED,

2) and sends STC_deregister.

Table 194: Recovery procedure

Distributed Co-Simulation Protocol Specification Version 1.0

 112 / 112

F. General Guideline

Regarding the use of transport protocols related to Control PDUs:

It is recommended to use reliable transport protocols for Control PDUs.

Regarding the use of transport protocols related to continuous DAT_input_output PDUs:

Reliable transport protocols are considered beneficial if the time needed to transmit a

PDU, including time for retransmission, is in general lower than the specified DCP

communication step size.

Unreliable transport protocols are considered beneficial if e.g. higher network

throughput is required, or the target platform is only capable of supporting unreliable

transport protocols.

Regarding the use of transport protocols related to discrete DAT_input_output PDUs:

It is recommended to use reliable transport protocols for transmission of discrete Da-

ta PDUs.

Regarding the use of transport protocols related to DAT_parameter PDUs:

It is recommended to use reliable transport protocols for transmission of

DAT_parameter PDUs.

Regarding master implementations:

Implement the suggested procedure to transition slaves to a defined state.

Define behaviour after unexpected shutdown of DCP master.

Regarding master implementations based on unreliable transport protocols:

Retransmit Request PDUs if no acknowledgement is received.

Query states of slaves at regular intervals (use heartbeat mechanism).

Use DCP slaves implementing the maxConsecMissedPdu attribute, whenever possible.

