
Modelica Association Project
“Distributed Co-Simulation Protocol”

Martin Krammer

DCP MAP Leader

martin.krammer@v2c2.at

Outline

Introduction

The Distributed Co-Simulation Protocol (DCP)

– Communication Protocol

– Architecture Description

– Operating Modes

– State Machine

– Exchange of Input and Output Data

– Use Case

The Future of DCP

Martin Krammer, VIF 2

Motivation

The Functional Mock-up Interface (FMI, MODELISAR project) standardizes integration of simulation models,
tools and solvers

But what about distributed setups?

Until now, this is done manually

Martin Krammer, VIF 3

(e.g. engine
testbench)

RT SystemNon-RT PC or Computing Cluster

Motivation

The Functional Mock-up Interface (FMI, MODELISAR project) standardizes integration of simulation models,
tools and solvers

But what about distributed setups?

Until now, this is done manually

Martin Krammer, VIF 3

(e.g. engine
testbench)

RT SystemNon-RT PC or Computing Cluster

Transport protocol

Motivation

The Functional Mock-up Interface (FMI, MODELISAR project) standardizes integration of simulation models,
tools and solvers

But what about distributed setups?

Until now, this is done manually

Martin Krammer, VIF 3

(e.g. engine
testbench)

RT SystemNon-RT PC or Computing Cluster

Transport protocol

Communication System

Wired
Communication

(e.g. CAN)

Wireless
Communication

(e.g. BlueTooth®)

Interprocess
Communication
(e.g. shared mem.)

Motivation

The Functional Mock-up Interface (FMI, MODELISAR project) standardizes integration of simulation models,
tools and solvers

But what about distributed setups?

Until now, this is done manually

Martin Krammer, VIF 3

(e.g. engine
testbench)

RT SystemNon-RT PC or Computing Cluster

Transport protocol

Communication System

Wired
Communication

(e.g. CAN)

Wireless
Communication

(e.g. BlueTooth®)

Interprocess
Communication
(e.g. shared mem.)

Distributed co-simulation
protocol

History - The ACOSAR Project

The ACOSAR project

– Advanced Co-Simulation Open System Architecture

– Duration: 09/2015-08/2018

– Costs: 8,123k€

– Effort: 60 PY

ACOSAR focuses on integration of

– Real-time and real-time, and

– Real-time and non-real-time systems

Primary goal: Negotiate technical specification of
communication protocol intended for
standardization

Martin Krammer, VIF 4

The Distributed Co-Simulation Protocol

Main design aspects

– Interoperability

− Define a communication protocol

− Goal: Pursue standardization with a recognized standardization body

– Compatibility

− Support a broad range of systems, from small microcontrollers to large test rigs

− Targets: Low overhead, low memory footprint

– Integration

− Develop methodology for application in development processes

− Master-Slave concept

– Communication

− Support multiple transport protocols

− Initially: UDP, CAN, USB, Bluetooth, and EtherCAT

– Economy

− Reduce development time

− Decrease computing cost

− Accelerate time-to-market

Martin Krammer, VIF 6

The Distributed Co-Simulation Protocol

Default integration methodology

Relies on DCP slave description file (.dcpx)

Defines provider-integrator relationship

Martin Krammer, VIF 7

The Distributed Co-Simulation Protocol

Default integration methodology

Relies on DCP slave description file (.dcpx)

Defines provider-integrator relationship

Martin Krammer, VIF 7

The Distributed Co-Simulation Protocol

Martin Krammer, VIF 8

DCP Slave Description

– DCP slave description accompanies DCP slave

– Specified as XSD 1.1 schema definition

– XML instance .dcpx File

Assertions

– Used to enforce specifications

– Avoid incorrect definitions

Available transformation strips
assertions and generates XSD 1.0
schema

Operating mode
Units

Types
Vendor specific annotations
Time resolution

Heartbeat definitions
Transport protocol
Capability flags

Variables (inputs/outputs/parameters)
Logging definitions

The Distributed Co-Simulation Protocol

Architecture Description

Martin Krammer, VIF 9

The Distributed Co-Simulation Protocol

Architecture Description

Martin Krammer, VIF 9

The Distributed Co-Simulation Protocol

Architecture Description

Martin Krammer, VIF 9

The Distributed Co-Simulation Protocol

Taxonomy of Protocol Data Units (PDU)

– „PDU Families“

Martin Krammer, VIF 10

ty
p
e
_
id

p
d
u
_
s
e
q
_
id

re
s
p
_
s
e
q
_
id

s
e
n
d
e
r

re
c
e
iv

e
r

p
a
ra

m
_
id

d
a
ta

_
id

p
o
s

ta
rg

e
t_

v
r

s
o
u
rc

e
_
v
r

s
o
u
rc

e
_
d
a
ta

_
ty

p
e

tr
a
n
s
p
o
rt

_
p
ro

to
c
o
l

s
ta

te
_
id

n
u
m

e
ra

to
r

d
e
n
o
m

in
a
to

r

s
te

p
s

o
p
_
m

o
d
e

e
rr

o
r_

c
o
d
e

lo
g
_
c
a
te

g
o
ry

lo
g
_
le

v
e
l

lo
g
_
m

o
d
e

lo
g
_
m

a
x
_
n
u
m

lo
g
_
e
n
tr

ie
s

lo
g
_
te

m
p
la

te
_
id

lo
g
_
a
rg

_
v
a
l

p
a
ra

m
e
te

r_
v
r

m
a
jo

r_
v
e
rs

io
n

m
in

o
r_

v
e
rs

io
n

s
c
o
p
e

[c
o
n
fi
g
u
ra

ti
o
n
 s

p
e
c
if
ic

]

s
la

v
e
_
u
u
id

[m
e
d
iu

m
 s

p
e
c
if
ic

]

ti
m

e

CFG_set_time_res 0x20 y y y y

CFG_set_steps 0x21 y y y y

CFG_config_input 0x22 y y y y y y

CFG_config_output 0x23 y y y y y

CFG_config_clear 0x24 y y

CFG_set_target_network_information 0x25 y y y y m

CFG_set_source_network_information 0x26 y y y y m

CFG_set_parameter 0x27 y y y y c

CFG_set_config_tunable_parameter 0x28 y y y y y y

CFG_set_param_network_information 0x29 y y y y c m

CFG_set_logging 0x2A y y y y y

CFG_set_scope 0x2B y y y y

STC_register 0x01 y y y y y y y

STC_unregister 0x02 y y y

STC_configure 0x03 y y y

STC_initialize 0x04 y y y

STC_run 0x05 y y y y

STC_reinitialize 0x06 y y y

STC_do_step 0x07 y y y y

STC_send_outputs 0x08 y y y

STC_stop 0x09 y y y

STC_reset 0x0A y y y

INF_state 0x80 y y

INF_error 0x81 y y

INF_log 0x82 y y y y

RSP_ack 0xB0 y y

RSP_nack 0xB1 y y y

RSP_state_ack 0xB2 y y y

RSP_error_ack 0xB3 y y y

RSP_log_ack 0xB4 y y c

NTF_state_changed 0xE0 y y

NTF_log 0xE1 y y c y

DAT_input_output 0xF0 y y c

DAT_parameter 0xF1 y y c

DCP Frame

Data (DAT)

P
ro

to
c
o
l
D

a
ta

 U
n
it
 (

P
D

U
)

State change

(STC)

Notification (NTF)

Response

(RSP)

C
o

n
tr

o
l

Information

(INF)

R
e
q
u
e
s
t

Configuration

(CFG)

The Distributed Co-Simulation Protocol

Operating Modes

– The DCP covers three different time domains

Martin Krammer, VIF 11

Operating mode Description

Soft real-time (SRT) Synchronous to absolute time,
tolerant to RT violations

Hard real-time (HRT) Synchronous to absolute time,
intolerant to RT violations

Non-real-time (NRT) Independent of absolute time

The Distributed Co-Simulation Protocol

DCP slave state machine for simulation control

A typical simulation cycle

1. Registration

2. Configuration

3. Initialization

4. Run/Compute

5. Stop

6. (Error)

Martin Krammer, VIF 12

Image source: DCP specification v1.0 RC 2

The Distributed Co-Simulation Protocol

DCP slave state machine for simulation control

A typical simulation cycle

1. Registration

2. Configuration

3. Initialization

4. Run/Compute

5. Stop

6. (Error)

Martin Krammer, VIF 12

Image source: DCP specification v1.0 RC 2

The Distributed Co-Simulation Protocol

DCP slave state machine for simulation control

A typical simulation cycle

1. Registration

2. Configuration

3. Initialization

4. Run/Compute

5. Stop

6. (Error)

Martin Krammer, VIF 12

Image source: DCP specification v1.0 RC 2

The Distributed Co-Simulation Protocol

DCP slave state machine for simulation control

A typical simulation cycle

1. Registration

2. Configuration

3. Initialization

4. Run/Compute

5. Stop

6. (Error)

Martin Krammer, VIF 12

Image source: DCP specification v1.0 RC 2

The Distributed Co-Simulation Protocol

DCP slave state machine for simulation control

A typical simulation cycle

1. Registration

2. Configuration

3. Initialization

4. Run/Compute

5. Stop

6. (Error)

Martin Krammer, VIF 12

Image source: DCP specification v1.0 RC 2

The Distributed Co-Simulation Protocol

DCP slave state machine for simulation control

A typical simulation cycle

1. Registration

2. Configuration

3. Initialization

4. Run/Compute

5. Stop

6. (Error)

Martin Krammer, VIF 12

Image source: DCP specification v1.0 RC 2

The Distributed Co-Simulation Protocol

DCP slave state machine for simulation control

A typical simulation cycle

1. Registration

2. Configuration

3. Initialization

4. Run/Compute

5. Stop

6. (Error)

Martin Krammer, VIF 12

Image source: DCP specification v1.0 RC 2

The Distributed Co-Simulation Protocol

Exchange of data during simulation phase

1. Configuration must be generated by DCP master

2. Configuration must be rolled out to DCP slaves prior to simulation

Zero run time overhead during simulation

Example:

Martin Krammer, VIF 13

The Distributed Co-Simulation Protocol

Exchange of data during simulation phase

1. Configuration must be generated by DCP master

2. Configuration must be rolled out to DCP slaves prior to simulation

Zero run time overhead during simulation

Example:

Martin Krammer, VIF 13

DCP slave 1
192.168.2.5

vr = 1
dt = uint8

vr = 2
dt = float32

DCP slave 2
192.168.2.7

vr = 2
dt = float32

vr = 1
dt = uint8

The Distributed Co-Simulation Protocol

Exchange of data during simulation phase

1. Configuration must be generated by DCP master

2. Configuration must be rolled out to DCP slaves prior to simulation

Zero run time overhead during simulation

Example:

Martin Krammer, VIF 13

DCP slave 1
192.168.2.5

vr = 1
dt = uint8

vr = 2
dt = float32

DCP slave 2
192.168.2.7

vr = 2
dt = float32

DCP master
192.168.2.2

vr = 1
dt = uint8

The Distributed Co-Simulation Protocol

Exchange of data during simulation phase

1. Configuration must be generated by DCP master

2. Configuration must be rolled out to DCP slaves prior to simulation

Zero run time overhead during simulation

Example:

Martin Krammer, VIF 13

DCP slave 1
192.168.2.5

vr = 1
dt = uint8

vr = 2
dt = float32

DCP slave 2
192.168.2.7

vr = 2
dt = float32

DCP master
192.168.2.2

vr = 1
dt = uint8

The Distributed Co-Simulation Protocol

Exchange of data during simulation phase

1. Configuration must be generated by DCP master

2. Configuration must be rolled out to DCP slaves prior to simulation

Zero run time overhead during simulation

Example:

Martin Krammer, VIF 13

DCP slave 1
192.168.2.5

vr = 1
dt = uint8

vr = 2
dt = float32

DCP slave 2
192.168.2.7

1

2

vr = 2
dt = float32

DCP master
192.168.2.2

CFG_config_output

1

type_id = 0x23,
pdu_seq_id = 1,
receiver = 1,
data_id = 0,
pos = 0,
source_vr = 1

2

CFG_config_output

type_id = 0x23,
pdu_seq_id = 2,
receiver = 1,
data_id = 0,
pos = 1,
source_vr = 2

vr = 1
dt = uint8

The Distributed Co-Simulation Protocol

Exchange of data during simulation phase

1. Configuration must be generated by DCP master

2. Configuration must be rolled out to DCP slaves prior to simulation

Zero run time overhead during simulation

Example:

Martin Krammer, VIF 13

DCP slave 1
192.168.2.5

vr = 1
dt = uint8

vr = 2
dt = float32

DCP slave 2
192.168.2.7

vr = 2
dt = float32

DCP master
192.168.2.2

vr = 1
dt = uint8

3
3

CFG_set_target_net
work_information

type_id = 0x25,
pdu_seq_id = 3,
receiver = 1,
data_id = 0,
transport_protocol
= UDP,
target_ip_address =
192.168.2.7,
target_port = 2048

The Distributed Co-Simulation Protocol

Exchange of data during simulation phase

1. Configuration must be generated by DCP master

2. Configuration must be rolled out to DCP slaves prior to simulation

Zero run time overhead during simulation

Example:

Martin Krammer, VIF 13

DCP slave 1
192.168.2.5

vr = 1
dt = uint8

vr = 2
dt = float32

DCP slave 2
192.168.2.7

vr = 2
dt = float32

DCP master
192.168.2.2

4

CFG_config_input

type_id = 0x22,
pdu_seq_id = 1,
receiver = 2,
data_id = 0,
pos = 0,
target_vr = 1,
source_data_type =
uint8

5

CFG_config_input

type_id = 0x22,
pdu_seq_id = 2,
receiver = 2,
data_id = 0,
pos = 1,
target_vr = 2,
source_data_type =
float32

vr = 1
dt = uint8

4

5

The Distributed Co-Simulation Protocol

Exchange of data during simulation phase

1. Configuration must be generated by DCP master

2. Configuration must be rolled out to DCP slaves prior to simulation

Zero run time overhead during simulation

Example:

Martin Krammer, VIF 13

DCP slave 1
192.168.2.5

vr = 1
dt = uint8

vr = 2
dt = float32

DCP slave 2
192.168.2.7

vr = 2
dt = float32

DCP master
192.168.2.2

vr = 1
dt = uint8

6
6

CFG_set_source_ne
twork_information

type_id = 0x26,
pdu_seq_id = 3,
receiver = 2,
data_id = 0,
transport_protocol
= UDP,
source_port = 2049

The Distributed Co-Simulation Protocol

Exchange of data during simulation phase

1. Configuration must be generated by DCP master

2. Configuration must be rolled out to DCP slaves prior to simulation

Zero run time overhead during simulation

Example:

Martin Krammer, VIF 13

DCP slave 1
192.168.2.5

vr = 1
dt = uint8

vr = 2
dt = float32

DCP slave 2
192.168.2.7

7

vr = 2
dt = float32

DCP master
192.168.2.2

7

type_id = 0xF0,
pdu_seq_id = 1,
data_id = 0,
payload:

uint8 float32

vr = 1
dt = uint8

The Distributed Co-Simulation Protocol

Use case by dSPACE, RWTH Aachen, ESI-ITI

Martin Krammer, VIF 14

Setup on display at final event

Future of DCP

The DCP 1.0-RC1 was submitted to Modelica Association for standardization

Will be maintained as Modelica Association Project (MAP)

Sustainable ACOSAR project result

– The DCP will be freely available

– Open for everyone!

Website: www.dcp-standard.org

Martin Krammer, VIF 15

www.modelica.org

http://www.dcp-standard.org/
http://www.modelica.org/

Publication

June 25, 2018 Krammer Martin 16

„The Distributed Co-Simulation Protocol for the Integration

of Real-Time Systems and Simulation Environments“

Martin Krammer, Martin Benedikt, Torsten Blochwitz, Khaled Alekeish, Nicolas Amringer, Christian Kater, Stefan Materne, Roberto

Ruvalcaba, Klaus Schuch, Josef Zehetner, Micha Damm-Norwig, Viktor Schreiber, Natarajan Nagarajan, Isidro Corral, Tommy Sparber,

Serge Klein and Jakob Andert

“Requirements Engineering for Consensus-Oriented Written Technical

Specifications”

Martin Krammer, Nadja Marko and Martin Benedikt, accepted for publication at

26th IEEE International Requirements Engineering Conference, August 20-24,

Banff, Alberta, Canada

“Master for Simulation Control using the Distributed Co-Simulation

Protocol”

Martin Krammer, Martin Benedikt, accepted for publication at IEEE

16th International Conference on Industrial Informatics, July 18-20, Porto,

Portugal

“Configuration of Slaves Based on the Distributed Co-Simulation Protocol”

Martin Krammer, Martin Benedikt, accepted for publication at 23rd International

Conference on Emerging Technologies and Factory Automation, September 4th -

7th, 2018, Torino, Italy

Martin Krammer, VIF 17

Martin Krammer

martin.krammer@v2c2.at

Any questions?

mailto:martin.krammer@v2c2.at

